

SS008

Generative Grammar-Based Fuzzing

SS008
Generative Grammar-Based Fuzzing

 1

Research Plan

1. Rationale

Despite technological and code advancements, software vulnerabilities remain a threat to the cyber world.

Nowadays, web browsers have become the primary attack vector for attackers. In recent years, there have also

been numerous cyber attacks, including the theft of Singaporeans’ medical data in the singhealth attack, and the

use of the eternal blue vulnerability in the WannaCry ransomware attack. Furthermore, software vulnerabilities

are extremely costly to fix if exploited, with estimated losses of $4 billion from the 2017 WannaCry ransomware

attacks. Thus, vulnerability discovery is our utmost priority.

This project aims to develop a workflow to find bugs in browses via fuzzing. To do so, we will be using

the open source project, Domato. Domato is a DOM fuzzer written by Ivan Fratric in 2017 to fuzz web browsers.

It has found 31 CVEs across popular web browsers Apple Safari, Google Chrome, Microsoft Internet Explorer,

Microsoft Edge, and Mozilla Firefox. Domato is a generative grammar-based fuzzer that generates random but

synthetically valid HyperText Markup Language (HTML) files. These files are to be opened by the web browser

in hopes that buggy sections of code within the browser will lead to crashes upon running some of the HTML

code. To test the validity of our workflow, we decided to fuzz an older version of Mozilla Firefox (53.0).

2. Research Question(s)
● How to find bugs in web browsers?

○ What techniques can we use to find bugs in web browsers?

■ What fuzzer can we implement?

■ How can we modify or extend the fuzzer?

○ Which web browser should we use to test the programme?

○ How does one catch crashes in a programme?

3. Hypothesis
We hypothesize that our modified fuzzer will be able to find new bugs in web browsers.

4. Engineering goal(s)

SS008
Generative Grammar-Based Fuzzing

 2

Our aim is to modify and improve the grammar in the Dom fuzzer, Domato, developed by Ivan Fradric. We hope

to improve on the Cascading Style Sheets (CSS), Scalable Vector Graphics (SVG) sections of Domato.

Furthermore, we hope to use the existing grammar engine within Domato to create an eXtensible Stylesheet

Language Transformation (XSLT) fuzzer.

In addition, we hope to create a fuzzing programme to run Domato and concurrently, check for and record bugs

on a single machine.

5. Expected Outcome(s)
We hope to be able to use the software, Domato, to find vulnerabilities in the web browsers. In our case, we will

be using Firefox to test our fuzzer.

For each bug we find, we hope to be able to extract the specific piece of code which causes the bug (to help others

reproduce the bug), understand how the bug causes the crash.

6. Procedures
We analyse (statically and dynamically) the structure of Domato to understand how it creates synthetically valid

HTML files using the grammar provided. We identify areas of the grammar or code that could be improved. A

web crawler is used to download example files (HTML, CSS or SVG files) from the internet. A python script

utilising regular expressions is written to extract the necessary grammar from the files and the new grammar is

added into Domato. We also write new grammar to generate random but synthetically valid XSLT files to do

XSLT fuzzing.

During/ after this improvement, we write a command script to call Domato to generate the files and then call

firefox to open the files while being monitored by the open source crash detection programme, BugId. In the event

we encounter a crash, we use BugId to generate a report of the crash and we analyse the HTML file understand

the nature of the crash.

After finding a few buggy files, we use a script and eyeballing to minimise the file to remove redundant lines of

code to enable us to perform root cause analysis.

7. Risk and Safety
● Don’t connect the computer to the Internet when fuzzing to ensure bugs are not directly reported to the

programme manufacture

SS008
Generative Grammar-Based Fuzzing

 3

● Ensure that the computer does not overheat during the fuzzing (can be done by monitoring the

temperature of the CPU)

8. Methods for Data Analysis
Improving Domato phase

- Using a web crawler (HTTrack) to find necessary files

- Using regular expressions to search for necessary portions of the downloaded files

- Using regular expressions to substitute specific values for general values

Fuzzing Phase

- Run BugId to identify the bugs for further analysis.

Analysis Phase

- Batch and python scripts to triage bugs

- Python script to minimise buggy files for root cause analysis

- Static analysis to identify the root cause of a bug

Bibliography from your literature review
1. Ivan Fratric. Domato. (last updated, 2018, July 04). Googleprojectzero/domato. Retrieved from

https://github.com/googleprojectzero/domato

2. SkyLined. BugId (accessed 2018, November 21). SkyLined/BugId. Retrieved from

https://github.com/SkyLined/BugId

3. HTML. (n.d.). Retrieved from https://www.w3schools.com/

https://github.com/googleprojectzero/domato
https://github.com/SkyLined/BugId
https://www.w3schools.com/

SS008
Generative Grammar-Based Fuzzing

 4

Abstract

The prevalent use of web browsers makes it a high-value target for hackers attempting to gain access to a

target’s system. A key to browser security is for vulnerabilities in browsers to be promptly discovered and

patched. A common method to uncover vulnerabilities is by fuzzing, where random but synthetically valid inputs

are generated, and executed by the targeted software so that vulnerabilities are revealed as software crashes when

buggy code processes such unexpected input. In this project, we developed a workflow for fuzzing browsers.

Using this workflow, we extended Domato[4], a grammar-based fuzzer, by hunting for rarely used CSS and SVG

components and incorporating it. Using Domato, we also wrote an XSLT fuzzer from scratch. Using BugId[5] for

crash detection, we tested our fuzzer on Firefox (version 53.0) for 11 days, executing 35500 generated files and

caused 296 crashes. Triaging was then performed, and 3 unique crashes were identified – two stack exhaustion

and one denial-of-service.

SS008
Generative Grammar-Based Fuzzing

 5

Report
1 Introduction

In the face of theoretical and practical

advances in code development, software

vulnerabilities is nonetheless still an ineradicable

security problem in all non-trivial programmes.

Software vulnerabilities have, in recent years, have led

to financial losses and the loss of time.

Examples of recent cyber attacks would

include the theft of Singaporeans’ medical data in the

SingHealth attack and the use of the eternal blue

vulnerability in the WannaCry ransomware attack in

2017 that resulted in an estimated loss of $4 billion.[1]

As such, an increasing number of people are engaging

in bug hunting and vulnerability analysis to uncover

new potentially exploitable vulnerabilities.

Bugs in browsers are especially significant

because they affect a large number of people. This is

especially so for major browsers such as Firefox which

has a market share of 10.96% of all browser usage in

August 2018[2]. If left unpatched, these bugs could be

used by malicious parties to gain access to

organizations’ or individuals’ systems and changes

could be made to the system regardless of the

geographical location via remote code execution.

After gaining access to the system, the attacker could

run commands to leave a persistent backdoor/shell on

the victim to repeatedly control their computer. They

could also force the victim’s computer to upload

sensitive classified information. Finding these

vulnerabilities and reporting them to the programme’s

manufacturer allows the manufacturer to roll out

patches and prevent these vulnerabilities from being

exploited. Hence, many manufacturers pay good

money for them. Google rewards as high as $15000 for

a sandbox escape vulnerability in chrome.[3]

One such method of bug hunting would be

‘fuzzing’. Fuzzing, also known as fuzz testing, is an

automated software testing technique that involves

providing invalid, unexpected, or random data as

inputs to a computer program with the hope that these

inputs will expose vulnerabilities within the computer

program. These vulnerabilities could be exposed in the

form of a crash or a hang.

In this paper, we attempt to build a workflow

to improve a fuzzer and perform fuzzing on a web

browser to find new bugs. This would consist of

understanding, improving and setting up a fuzzer and

debugging tools to identify crashes and hangs,

followed by analysis of the results of the fuzzer. The

fuzzer that we have decided to improve on is

Domato[4]. Domato has found 31 CVEs across popular

web browsers Apple Safari, Google Chrome,

Microsoft Internet Explorer, Microsoft Edge and

Mozilla Firefox. The debugging tool we chose was

BugId[5] as it is not only able to detect crashes in

browsers but is also able to generate reports about each

crash, this is useful for triaging and bug analysis. To

test the validity of our workflow, we decided to fuzz

an older version of Firefox (53.0).

1. 1 Related Work

SS008
Generative Grammar-Based Fuzzing

 6

 Fuzzing has been used since the 1980s and is a

staple in modern vulnerability testing. There are

several different types of fuzzer for different fuzzing

approaches.[6]

Fuzzers can also be grammar-based or non-

grammar based. Grammar-based fuzzers generate an

input based on a known syntax whereas non-grammar

based fuzzers generate input without a format. While

non-grammar based fuzzers may seem to generate

more varied input, it is often useful to generate input

based on a specified syntax to ensure that an

application’s parser accepts the input as valid to pass

to the programme.

Fuzzers can be generative or mutative.

Generative fuzzers creates inputs from scratch while

mutation based fuzzers generate new input by

modifying existing inputs. Mutative fuzzers are

generally simpler to set up because it only requires a

few specific input examples to start running whereas

one might require spending time writing the input

structure for a generative fuzzer, particularly if it is

also grammar-based, however, they are limited by the

input examples. An example of a mutative fuzzer

would be the popular radamsa fuzzer.[7]

Some fuzzers are white-boxed fuzzers which

aware of a programme’s structure (such as American

Fuzzy Lop(AFL)) and thus try to generate input to

traverse the different control flow branches. Others

such as Zuff[8] are black-box fuzzers and generate

input without consideration of programme structure.

While whitebox fuzzers tend to give better results,

they are also more difficult to set-up. Instead of having

the fuzzer monitor the target application to gain

greater code, one can also analyse the source code (if

the target is open source) or perform reverse

engineering to better understand a programme’s

structure and write a specialised fuzzer specifically to

generate interesting input for that application.

Domato itself is a generative, grammar-based,

black-box fuzzer.

2 Materials and Methods
Equipment needed:

1. A 32/64-bit computer running Windows 10,
preferably with a fast CPU and SSD

Prerequisite Software:
1. Python 2.7.16 (to run BugId and Domato)
2. Python 3.4+ (to run our scripts)
3. Domato[2]
4. BugId[3]
5. HTTrack Webcrawler[9]
6. Firefox (53.0 and above)

2.1 Improvements Made to Domato

Before setting up the fuzzing system to run

Domato, we made several improvements to Domato in

order to increase our chances of finding new bugs.

There are several components to the input code

generated by Domato:

1. HyperText Markup Language (HTML)
2. Cascading Style Sheets (CSS)
3. JavaScript (JS)
4. Scalable Vector Graphics (SVG)

In this project, we decided to focus on

extending the CSS and SVG grammar components of

Domato. Furthermore, we also extended Domato by

writing a grammar for eXtensible Stylesheet Language

Transformation (XSLT) code, which is not native to

Domato. XSLT has a history of finding exploitable

SS008
Generative Grammar-Based Fuzzing

 7

bugs in Firefox (e.g. CVE-2017-5376 and CVE-2010-

1199), thus we decided to implement XSLT.

2.1.1 Cascading Style Sheets(CSS) & Scalar

 Vector Graphics(SVG)

CSS is a programming language used to

describe to a browser how a certain webpage should

be styled. SVG is an XML-based vector image format

for two-dimensional graphics and is used to create

images.

To improve Domato’s CSS and SVG code

generation, we attempted to find new CSS properties

and their corresponding values as well as new SVG

elements, attributes and their corresponding values to

incorporate into Domato. Doing so allows Domato to

generate more varied CSS and SVG code, increasing

our chance of finding new vulnerabilities.

With reference to fig 2.2, we started by using

HTTrack[9] to crawl the web for CSS, SVG and HTML

files (web developers sometimes use inline SVG in

their HTML code). We started the crawler from

multiple different sites to ensure that there were a

variety of CSS, SVG and HTML files downloaded.

Before extracting the SVG elements, attributes

and values, we had to extract the SVG section of code

from the HTML files as directly extracting the SVG

components from the HTML files using regular

expressions would end up extracting HTML

components as well.

To extract the CSS properties from the CSS

files, we used a python script with regular expressions.

To extract the CSS properties, the regular expression

searched for words between ‘{’ or ‘;’ and ‘:’. After

this, we used a python script to compare the CSS

properties we extracted with the existing CSS

properties in Domato to get the missing properties. To

extract the SVG elements and attributes, this process

is repeated with different regular expressions.

To extract the CSS values of the missing CSS

properties, the regular expression searched for words

between ‘property:’ and ‘;’ or ‘}’. This process is also

repeated to extract the SVG values for the missing

SVG attributes.

When extracting the CSS and SVG values, we

noticed that some of the values were specific examples

of general values. E.g. #AABB6A is a code for a colour.

Thus, we had to use more regular expressions to

replace said specific values with their general

symbols. For example, #AABB6A would be converted

into <color>.

Subsequently, the missing CSS properties and

their respective values are formatted properly and put

into text files to be read by the Domato grammar

engine. These text files are included into Domato’s

generator. This process is repeated with the SVG

elements, attributes and values. The new CSS

properties, SVG elements and attributes were

weighted to appear as 50% of all the CSS properties,

SVG elements and SVG attributes generated. This

helps increase our chances of finding bugs with our

modified fuzzer.

https://nvd.nist.gov/vuln/detail/CVE-2010-1199
https://nvd.nist.gov/vuln/detail/CVE-2010-1199

SS008
Generative Grammar-Based Fuzzing

 8

Fig 2.0: Workflow for extending

2.1.2 eXtensible Stylesheet Language

 Transformation (XSLT)

 XSLT is a language used to transform

eXtensible Markup Language (XML) documents into

other XML documents or formats such as XHTML to

be displayed on web pages. The XSLT grammar we

wrote transforms a prewritten, static XML document

into an XHTML document to be displayed by Firefox.

Figure 2.1: Workflow for extending Domato with XSLT

To create an XSLT fuzzer, we needed to learn

how to code in XSLT. This was done by reading XSLT

documentation on websites such as tutorialspoint[10]

and W3Schools[10]. Following which, we had to

understand Domato’s syntax for its context-free

grammar via reading its documentation and

experimenting with generating symbols.

Following that, we proceeded to write the

grammar for XSLT. Some of the elements were

difficult to introduce as we had to store the name of

previously coded variables and templates before

calling them. To achieve this, we had to include

python code into the grammar file. Following which,

we attempted to link the written HTML, CSS and JS

elements into the XSLT file. However, as the parser

for XHTML is stricter than that for HTML, including

the HTML and JS code generated by Domato lead to

parsing errors. The only component that could be

included was the CSS component.

Lastly, as we were generating XSLT files

using our own grammar file, we could not use

Domato’s built-in HTML file generator and had to

SS008
Generative Grammar-Based Fuzzing

 9

create our own python script to call Domato to parse

the grammar file and generate multiple XSLT files.

2.2 Flow of the Fuzzing Architecture

We wrote a batch script to automate the

generation and testing of HTML and XSLT files. The

HTML files consist of HTML, JS, CSS and SVG code

whereas the XSLT files only contain XSLT and CSS

code.

As figure 2.3 suggests, the programme starts

by generating 100 HTML files. Generating many files

at once is more efficient than generating one file at a

time as Domato only needs to parse the grammar once.

Before the testing starts, we need to turn on full

page heap for Firefox. When it is enabled, each heap

Firefox allocates is placed on the end of a memory

page boundary, and the subsequent page is marked as

PAGE_NOACCESS. Any buffer overruns are thus

registered as access violations and are immediately

caught by BugId.

For each HTML file to test, the programme

uses Firefox to open the HTML file which is next in

line for testing. While this happens, it is running BugId

and monitoring for crashes on Firefox. After 30

seconds, the page should have loaded, thus the

programme closes BugId and Firefox.

 If a bug is indeed found, the programme will

copy the HTML file to another directory for future

analysis.

A similar flow is used for fuzzing of the

generated XSLT files. The main difference is that for

each XSLT file, a new XML file linking to that XSLT

file will be created.

Fig 2.3 Flow chart of fuzzing program

2.3 Triaging Bugs

From the multiple crashes which we obtained,

many of them were caused by the same bug (refer to

table 3.0). Thus, triaging was needed to remove

duplicate crashes which were caused by the same bug

to allow us to more efficiently look for unique and

interesting bugs.

Triaging is a 2-step process:

1. Generating a BugId report of each crash

2. Sorting reports by ID to group crashes utilising

the same vulnerability

 For each XSLT and HTML file which caused

a crash, we run BugId on them again. This time, we set

SS008
Generative Grammar-Based Fuzzing

 10

BugId to generate an HTML bug report for each of the

files. This is done using a batch script.

BugId generates an ID for each crash based on

the type of bug causing the crash. When the reports of

identical bugs are generated, only one of them will be

saved, eliminating exact duplicate bugs.

 However, this only works for identical bugs

where the stack is the same when the crash happens.

There are cases where 2 files utilise the same

vulnerability to cause a crash but are slightly different

in implementation, thus they will be treated as

different bugs by BugId. Therefore, we also need to

sort such reports and group crashes that utilise the

same vulnerability together. This was done using a

python script.

 The python script would extract the bug type

from each of the reports and copy the report and

corresponding buggy file into a directory with the

name of the bug type.

3 Results

Table 3.0: Overall Fuzzing Statistics

File format HTML XSLT

Time fuzzed 11 days 11 days

No. of files generated 15000 20500

No. of crashes 3 293

No. of unique crashes 1 2

Table 3.1: Crash 1 (XSLT)

BugId RecursiveCall 73c

Location firefox.exe!xul.dll+0x1872270

Security
impact

Denial of Service

Description A recursive function call exhausted
available stack memory

Table 3.2: Crash 2 (XSLT)

BugId Breakpoint 1b1

Location firefox.exe!xul.dll+0x8488BF

Security
impact

Denial of Service

Description A breakpoint has been reached

Table 3.3: Crash 3 (HTML)

BugId RecursiveCall 73f

Location firefox.exe!xul.dll+0x501A8D

Security
impact

Denial of Service

Description A recursive function call exhausted
available stack memory

4. Discussion

Although crashes are usually indicative of

bugs in programmes. This is not always true, some

crashes are merely false positives. Crashes 1 and 3 are

examples of such false positives. The problem of stack

exhaustion is generally considered to be caused by a

bug in programmer code (in this case the XSLT and

HTML code Firefox executed) and not a bug in the

programming code of the application (Firefox). This is

because stack exhaustion is caused by firefox doing

what is intended of it, executing functions as it has

SS008
Generative Grammar-Based Fuzzing

 11

been instructed to by the XSLT or JS code. The

problem of stack exhaustion is a stability issue and not

a security vulnerability. Such issues cannot lead to

remote code execution and privilege escalation cannot

be achieved, thus such issues have a low exploitability.

Crash 2 is caused by a breakpoint in the Firefox

code being reached. Breakpoints in the code are lines

that intentionally crash a programme when run.

Despite these being used during development. Such

breakpoints should be removed from the code before

release, thus this would be considered as a bug.

Furthermore, a breakpoint being reached may imply

that the issue is a known problem. This means that this

crash is caused by a legit bug in Firefox. However, it

is not exploitable and thus not a security vulnerability.

5. Limitations and Future Work
 While doing this project, we had to deal with

several constraints. The main two of which was

computing resources and time. We did not have a

server farm to run our fuzzer on, instead, we only had

2 machines which ran with Intel i5-3470 processors

and hard drives (one was fuzzing XSLT and the other

was fuzzing HTML). We were only able to run the

fuzzer for a total of 11 days.

Although we have made some improvements

to Domato’s grammar, there is still room for

improvement. Firstly, we could improve the JS,

HTML and XSLT grammar with the same workflow

used to improve the CSS and SVG components.

Secondly, we could also add code coverage analysis

into Domato to increase its effectiveness. Also, to

actually find more bugs within Firefox, we should not

only use our improved Domato fuzzer but also utilise

other open source fuzzing projects such as Mozilla’s

DomFuzz Project.[12] Apart from just finding bugs in

Firefox, we can attempt to run the modified fuzzer on

other browsers or other platforms (such as mobile).

6. Conclusion
 We extended the CSS and SVG components

and implemented XSLT fuzzing in Domato and fuzzed

Firefox for 11 days, finding 3 unique denial-of-service

crashes.

Acknowledgements
We would like to thank our mentors, Sin Mong Leng and Ho Wei Xiong for their constant guidance and

unwavering support. We would also like to thank our schools, Temasek Junior College and Singapore Chinese

Girls’ School, for giving us the opportunity to do this project.

References
[1] Berr, J. (2017, May 16). "WannaCry" ransomware attack losses could reach $4 billion. Retrieved from

https://www.cbsnews.com/news/wannacry-ransomware-attacks-wannacry-virus-losses/

[2] Desktop internet browser market share 2018 | Statistic. (n.d.). Retrieved from

https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/

SS008
Generative Grammar-Based Fuzzing

 12

[3] Chrome Rewards – Application Security – Google. (n.d.). Retrieved December 20, 2018, from

https://www.google.com/about/appsecurity/chrome-rewards/index.html

[4] Ivan Fratric. Domato. (last updated, 2018, July 04). Googleprojectzero/domato. Retrieved from

https://github.com/googleprojectzero/domato

[5] SkyLined. BugId (accessed 2018, November 21). SkyLined/BugId. Retrieved from

https://github.com/SkyLined/BugId

[6] Fuzzing. (n.d.). Retrieved December 20, 2018, from https://www.owasp.org/index.php/Fuzzing

[7] Aki Helin / radamsa. (n.d.). Retrieved December 20, 2018, from https://gitlab.com/akihe/radamsa

[8] Basic zzuf usage. (n.d.). Retrieved December 20, 2018, from http://caca.zoy.org/wiki/zzuf/tutorial1

[9] HTTrack Website Copier - Free Software Offline Browser (GNU GPL). (n.d.). Retrieved from

https://www.httrack.com/

[10] Tutorialspoint.com. (n.d.). XSLT Tutorial. Retrieved December 20, 2018, from

https://www.tutorialspoint.com/xslt/

[11] HTML. (n.d.). Retrieved from https://www.w3schools.com/

[12] MozillaSecurity. (2018, June 29). MozillaSecurity/domfuzz. Retrieved December 20, 2018, from

https://github.com/MozillaSecurity/domfuzz

Appendix

1. HTML fuzzing script

2. XSLT fuzzing script

3. Static XML used for testing

4. CSS property extractor python script

5. CSS value extractor python script

6. Triaging Script (phase 1, HTML)

7. Triaging Script (phase 1, XSLT)

8. Triaging Script (phase 2)

9. Minimised Version of ‘Breakpoint Reached’ Code

http://caca.zoy.org/wiki/zzuf/tutorial1
https://www.w3schools.com/
https://github.com/MozillaSecurity/domfuzz

SS008
Generative Grammar-Based Fuzzing

 13

REM HTML Fuzzing Script

:loop

for /F %%f in (data_html.txt) do @set cur=%%f

REM Generate Files

call domato-master\generator.py --output_dir test_files --no_of_files 100

REM Testing the Files

call BugId-master\PageHeap.cmd firefox ON

call BugId-master\PageHeap.cmd "minidump-analyzer.exe" ON

for %%f in (test_files*.*) do (

 echo Testing File: %%f

 REM Run the Actual Program

 call BugId-master\BugId.cmd -q -f --nApplicationMaxRunTimeInSeconds=30

"C:\Program Files\Mozilla Firefox\firefox.exe" -- %%f

 if ERRORLEVEL 1 (

 echo BUG Detected

 copy %%f buggy_files /Y

)

)

set /a cur=%cur%+100

echo %cur% > data_html.txt

del test_files*.* /Q

goto loop

REM XSLT Fuzzing Script

for /F %%f in (data_xslt.txt) do @set cur=%%f

SS008
Generative Grammar-Based Fuzzing

 14

:loop

REM Generate Files

call python xslt/xslt_generator.py 100 xslt_files

REM Testing the Files

call BugId-master\PageHeap.cmd firefox ON

call BugId-master\PageHeap.cmd "minidump-analyzer.exe" ON

for %%f in (xslt_files*.*) do (

 REM Prep the test xml file

 echo ^<?xml version="1.0" encoding="UTF-8"?^> > xslt_cur.xml

 echo ^<?xml-stylesheet type="text/xsl" href="%%f"?^> >> xslt_cur.xml

 type xslt_test_template.xml >> xslt_cur.xml

 echo Testing File: %%f

 REM Run Firefox

 call BugId-master\BugId.cmd -q -f --nApplicationMaxRunTimeInSeconds=30

"C:\Program Files\Mozilla Firefox\firefox.exe" -- xslt_cur.xml

 if ERRORLEVEL 1 (

 echo BUG Detected

 copy %%f buggy_files /Y

)

)

@set /a cur=%cur%+100

echo %cur% > data_xslt.txt

del xslt_files*.* /Q

goto loop

<?xml-stylesheet type="text/xsl" href="xslt_out.xsl"?>-->

<catalog>

SS008
Generative Grammar-Based Fuzzing

 15

 <cd release_date="090202">

 <title>

 <main_title>Empire Burlesque</main_title>

 <subtitle>Fights Back</subtitle>

 </title>

 <artist type="simple">

 <name race="chinese">

 Bob Dylan

 <middle_name type="True">Robert</middle_name>

 </name>

 </artist>

 <country>USA

 <city state="Singapore"/>

 <lane number="10"/>

 <floor value="10">

 <unit> 123 </unit>

 </floor>

 </country>

 <company>Columbia

 <salary position="vice-president">300</salary>

 <location>

 <country>Singapore</country>

 <city>Singapore

 <random>RANDOM</random>

 </city>

 </location>

 </company>

 <price currency="SIN">10.90</price>

 <date day_of_week="Monday">

 <year>1981</year>

 <month>03</month>

SS008
Generative Grammar-Based Fuzzing

 16

 <day>21</day>

 </date>

 </cd>

Everything in the <cd></cd> is copied many times

</catalog>

#CSS Property Extractor

import os

import re

def css_extract():

 directory = os.fsencode("cssfiles")

 all_properties = []

 for file in os.listdir(directory): #For each file in

cssfiles directory --> filename

 filename = os.fsdecode(file)

 print("Current File:", filename)

 line = ""

 try:

 with open("cssfiles//" + filename) as f: #puts all chars into

1 line

 for l in f:

 line += l

 except:

 print("File parsing error, skipping file")

 continue

 line = "".join(line.split()) #Removes all white spaces

from line

 #line = "This{width:30; box-size:10;box-size:200; }"

 properties = re.findall(r""" #All strings that match

the regular expression

 (?<=(?: #Positive look back

SS008
Generative Grammar-Based Fuzzing

 17

 \{|;)) #{ | ; (starting

characters)

 ([a-zA-Z\-@]+) #Captures property

(must consist of alphebetic chars or - @)

 (?=:) #Positive look ahead

for : (terminating character)

 """,line,re.X)

 for css_property in properties:

 if len(css_property) > 2: #Removing CSS

Variables

 if css_property[0] == css_property[1] == '-':

 continue

 all_properties.append(css_property.lower()) #Adds properties to

all property list, ensures small letters

 print("Starting Processing--------------------------------")

 all_properties = list(set(all_properties)) #Removes duplicated

properties

 all_properties = sorted(all_properties, key=str.lower) #Lexicographically

sorts properties

 fileout = open(r"property_files//css_property_output.txt","w")

 #Writing properties to text file

 for css_property in all_properties:

 #print(css_property)

 fileout.write(css_property+"\n")

 #fileout.write("Total Number of properties: " + str(len(all_properties)))

 fileout.close()

 print("Number of Properties from css files:", len(all_properties))

SS008
Generative Grammar-Based Fuzzing

 18

def compare_missing_properties():

 domato_filename = r"domato_css_properties.txt"

 property_filename = r"all_properties.txt"

 missing_properties = []

 with open(domato_filename) as df:

 domato_properties = set(["".join(l.split()) for l in df])

 with open(property_filename) as pf:

 properties_to_add = ["".join(l.split()) for l in pf]

 properties_to_add.pop() #Removes line about how

many properties there are

 for css_property in properties_to_add:

 if css_property not in domato_properties:

 missing_properties.append(css_property)

 fileout = open(r"missing_properties.txt","w") #Writing properties

to text file

 for css_property in missing_properties:

 print(css_property)

 fileout.write(css_property+"\n")

 fileout.write("Total Number of properties: " +

str(len(missing_properties)))

 fileout.close()

 print("Number Missing of Properties:", len(missing_properties))

#MAIN

SS008
Generative Grammar-Based Fuzzing

 19

CODE##

##################################

css_extract()

directory = os.fsencode("property_files")

all_properties = []

for file in os.listdir(directory): #For each file in

cssfiles directory --> filename

 filename = os.fsdecode(file)

 try:

 print("Current Property File:", filename)

 with open("property_files//" + filename) as f:

 for line in f:

 line = "".join(line.split())

 all_properties.append(line)

 except:

 print("ERROR WITH FILE:", filename)

 continue

all_properties = list(set(all_properties))

all_properties = sorted(all_properties, key=str.lower)

fileout = open(r"all_properties.txt","w") #Writing properties to text

file

for css_property in all_properties:

 #print(css_property)

 fileout.write(css_property+"\n")

fileout.write("Total Number of properties: " + str(len(all_properties)))

fileout.close()

print("Number of Properties:", len(all_properties))

SS008
Generative Grammar-Based Fuzzing

 20

compare_missing_properties()

#CSS Value Extractor

import re

import os

def load_files(directory="cssfiles"):

 print("Loading Files...")

 #Compacting CSS files into list of strings

 files = []

 err = 0 #Error counter

 #directory = os.fsencode("cssfiles_test")

 for file in os.listdir(directory): #For each file

in cssfiles directory --> filename

 filename = os.fsdecode(file)

 #print("Loading:", filename)

 line = ""

 try:

 with open(directory+"//" + filename) as f: #puts all

chars into 1 line

 for l in f:

 line += l

 except:

 err += 1

 #print("File parsing error, skipping file")

 continue

 line = "".join(line.split()) #Removes all white

spaces from line

 files.append(line)

 print(err, "files skipped due to parsing error")

 return files

SS008
Generative Grammar-Based Fuzzing

 21

files = load_files("cssfiles") #directory for css

files

property_file = "missing_properties.txt" #file of properties

to check

output_properties_file = "additional_css.txt" #file to copy paste

to css.txt

output_values_file = "additional_cssproperties.txt" #file to

copy paste to cssproperties.txt

counter = 0

property_value_pairs = {}

outp = open(output_properties_file, 'w+')

outv = open(output_values_file, 'w+')

#Finding Values for each property

print("Getting values...")

with open(property_file) as pf:

 for line in pf:

 #Extracting values-----------

 cur_property = "".join(line.split())

 print ("Getting", cur_property)

 all_values = []

 for file in files:

 values = re.findall(r""" #All strings that

match the regular expression

 (?:\{|;)(?:"""+cur_property+""":)

 ([^;\}]+)

 (?:\}|;)

SS008
Generative Grammar-Based Fuzzing

 22

 """,file,re.X)

 values = list(set(values))

 for value in values:

 all_values.append(value)

 all_values = tuple(sorted(set(all_values), key=str.lower))

 property_value_pairs[cur_property] = all_values

 #FORMATTING-------------------

 all_values = list(all_values)

 new_values = set()

 if len(all_values) == 0:

 print ("No Values,

Skipping..")

 continue

 counter+= 1

 outp.write("#" + cur_property + '\n')

 outp.write("<new_cssproperty> = "+cur_property+":

<cssproperty_"+cur_property+">\n")

 outp.write("<cssproperty_name> = "+ cur_property + "\n")

 outp.write("<cssproperty_value> = <cssproperty_" +cur_property +">\n\n")

 outv.write("\n#Values for "+cur_property+"\n")

 for value in all_values:

 #[0-9]*\.?[0-9]* means floating point numnber

 value = re.sub(r'#[0-9a-fA-F]+', r"<color>", value)

 value = re.sub(r'rgba\([0-9]*\.?[0-9]*,[0-9]*\.?[0-9]*,[[0-9]*\.?[0-

9]*,[0-9]*\.?[0-9]*\)', r"<color>", value)

 value = re.sub(r'[0-9]*\.?[0-9]*%', '<percentage>%', value)

SS008
Generative Grammar-Based Fuzzing

 23

 value = re.sub(r'[0-9]*\.?[0-9]+', r"<float>", value)

 value = re.sub(r'[\d]+', r"<fuzzint>", value)

 new_values.add(value)

 for value in new_values:

 outv.write("<cssproperty_"+cur_property+"> = "+value+"\n")

outp.close()

outv.close()

print ("Finished,", counter, "properties added")

REM HTML Triage Script

call BugId-master\PageHeap.cmd firefox ON

call BugId-master\PageHeap.cmd "minidump-analyzer.exe" ON

for %%f in (buggy_files*.*) do (

 echo Testing File: %%f

 REM Run the Actual Program

 REM BugId-master\BugId.cmd %WinDir%\system32\rundll32.exe -q -- advapi32

CloseThreadWaitChainSession

 call BugId-master\BugId.cmd -q --bGenerateReportHTML=true "--

sReportFolderPath=\"BugId_report\"" --nApplicationMaxRunTimeInSeconds=30

"C:\Program Files\Mozilla Firefox\firefox.exe" -- %%f

)

call python triage2.py

REM XSLT Triage Script

call BugId-master\PageHeap.cmd firefox ON

call BugId-master\PageHeap.cmd "minidump-analyzer.exe" ON

SS008
Generative Grammar-Based Fuzzing

 24

for %%f in (buggy_files*.xsl) do (

 echo Scanned File: %%f

 REM Run the Actual Program

 REM BugId-master\BugId.cmd %WinDir%\system32\rundll32.exe -q -- advapi32

CloseThreadWaitChainSession

 echo ^<?xml version="1.0" encoding="UTF-8"?^> > %%f.xml

 echo ^<?xml-stylesheet type="text/xsl" href="%%~nxf"?^> >> %%f.xml

 type xslt_test_template.xml >> %%f.xml

)

for %%f in (buggy_files*xml) do (

 echo testing file %%f

 call BugId-master\BugId.cmd -q --bGenerateReportHTML=true "--

sReportFolderPath=\"BugId_report\"" --nApplicationMaxRunTimeInSeconds=60

"C:\Program Files\Mozilla Firefox\firefox.exe" -- %%f

)

call python triage2.py

#Triaging Script Phase 2

import re

import os

import shutil

d = {}

for filename in os.listdir('BugId_report'):

 print filename

 key = re.findall(r"^[\w\s]+", filename)

 key = key[0]

 if key in d:

 d[key].append(filename)

SS008
Generative Grammar-Based Fuzzing

 25

 else:

 d[key] = [filename]

 if not os.path.exists('sorted_report\\' + key.replace(" ", "")):

 os.makedirs('sorted_report\\' + key.replace(" ", ""))

 shutil.copyfile('BugId_report\\' + filename, 'sorted_report\\' +

key.replace(" ", "") + '\\' + filename)

 #copy the actual buggy file

 report = open('BugId_report\\' + filename, 'r')

 text= report.read()

 source_file_name = re.findall(r"(?:<td>Arguments:

<\/td><td>\['buggy_files\\\\)([^']+)(?:'])", text)

 source_file_name = source_file_name[0]

 shutil.copyfile('buggy_files\\' + source_file_name, 'sorted_report\\' +

key.replace(" ", "") + '\\' + source_file_name)

 print (source_file_name + " copied")

 if source_file_name[-4:] == '.xml':

 source_file_name = source_file_name[:-4]

 shutil.copyfile('buggy_files\\' + source_file_name, 'sorted_report\\' +

key.replace(" ", "") + '\\' + source_file_name)

 print(source_file_name + " copied")

 report.close()

<!-- Minimised Version of ‘Breakpoint Reached’ Code -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html><body><xsl:apply-templates/></body></html>

</xsl:template>

<xsl:template match="/catalog">

<xsl:for-each select="/catalog/cd">

SS008
Generative Grammar-Based Fuzzing

 26

 <xsl:value-of select="/"/>

 <xsl:value-of select="/"/>

</xsl:for-each>

<xsl:for-each select="/">

 <xsl:apply-templates/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

SS008
Generative Grammar-Based Fuzzing

 27

Overview of Components of Fuzzing System

Domato is a DOM fuzzer written by Ivan Fratric of Google. We used it to generate multiple HyperText

Markup Language (HTML) files to be tested in Firefox. For this project, we attempt to modify and improve the

Domato fuzzer to find new bugs.

BugId is the bug catcher of the system. As we open the HTML files using Firefox, BugId monitors the

programme for any crashes and displays information regarding the bug.

Firefox is the browser we are targeting for the fuzzing. We used an older version of Firefox (53.0) to

ensure our fuzzing setup was working.

HTTrack is the web crawler we used to crawl the web and download specific types of files (CSS and SVG

files) to be used to improve Domato.

