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ABSTRACT 

Staircase image recognition has applications in robotics, enabling robots to detect and classify 
staircases allows robots to plan their gait to climb up the stairs effectively. A popular way to perform object 
image recognition is to utilise convolutional neural networks. In this paper, we compare the accuracy and 
runtimes of 4 different pre-trained convolutional neural networks to investigate which would be best to use 
for real world application in a staircase cleaning robot. We found that for the 4 models we tried, their  
ranking for accuracy was the inverse of their ranking for prediction speed. Ranked by accuracy, the models 
are: Inception-Resnet v2, Inception v3, ResNet 50, MobileNet v2. For real world use, we recommend 
Inception-v3 with its relatively high accuracy and short prediction times. 

 
INTRODUCTION 

 A neural network (NN) is a data structure 
which is used to determine relationships in a set of 
data by training the network with a established 
dataset, then allowing it to make predictions with 
new sources of data. It is a popular form of 
supervised machine learning. 
 The basic structure of a NN is a directed, 
layered graph where each node (i) takes input from 
a set of neurons from the previous layer (J). Each 
neuron then calculates its activation value by 
applying a function on the summation of the 
product of the output values (aj) of the nodes in J 
the weight of the edge Wij where j is a member of 
set J. This activation function can be a number of 
different functions, including: 

1. ReLU (Rectified Linear Unit)  

 
2. Leaky ReLU  

 

3. Random ReLU 

 
4. Sigmoid 

 
5. Hyperbolic Tangent  

 
6. Linear 

 

𝑦𝑦 = max(0,𝑥𝑥) 

𝑦𝑦 = max(~0.1𝑥𝑥, 𝑥𝑥) 

𝑦𝑦 = max(~0.1𝑥𝑥, 𝑥𝑥) 

𝑦𝑦 =
1

1 + 𝑒𝑒−𝑥𝑥
 

𝑦𝑦 = tanh 𝑥𝑥 

𝑦𝑦 = 𝑥𝑥 
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Figure 1.0  Example of a multiclass neural 
network 

A image prediction NN is made up of layers 
of nodes, which are similar to neurons in a human 
brain, which the input (an image converted into an 
array) is routed through, and as an output the 
probabilities of the image being a certain class is 
received.  

Convolutional Neural Networks (CNNs) are 
a form of neural networks specifically adapted for 
image recognition purposes, utilising specific 
features such as convolutions and pooling. 
 The key layers of the CNN are the input 
layer, convolution layer, ReLU layer, pooling layer, 
and the output (dense, softmax activated) layer. The 
input layer receives the raw pixel values of the 
image with 4, 3 or 1 channels depending on colour 
mode (RGBA, RGB, grayscale). 

The convolution layer works by sliding a 
filter across the width and height of the input 
volume and computes the dot product between the 
filter and the kernel at any position. This convolves 
the original image into a feature map, which is a 
mapping of where specific features of the image are 
found. The convolutional layer can also act as 
feature identifiers, such as curve detector filters etc. 

The Rectified Linear unit (ReLU) activation 
operation is used after every convolution operation 
to remove negative values from the neurons by 
running the function 𝑥𝑥 = max( 0, 𝑥𝑥 ), where x is 
the activation value. This helps to mitigate the 
vanishing gradient problem that can occur when 

training extremely deep models. The pooling layer 
is a method used to downsample the resolution and 
size of each feature map but still retain the most 
important information. Various methods of pooling 
exist, such as Max pooling, Average pooling, Sum 
pooling.  

 
 Figure 1.1: various pooling methods with 

2x2 filters and a stride of 2 
 

Pooling layers help to reduce the amount of 
parameters, thus reducing the computational 
complexity. As the resultant resolution is also 
decreased, this also helps to prevent overfitting of 
the model. 
 Apart from just being convolutional neural 
networks, the models we tested were also residual 
neural networks, with the exception of Inception 
v3. 
 Residual neural networks (ResNets) are 
inspired by pyramidal cells in the cerebral cortex. 
In residual neural networks, some activations can 
jump over layers and be added to the activation of a 
deeper layer.  

max(1, 0, 2, 5) = 5 



 ResNets are generally structured into 
various residual blocks, with a residual connection 
between the first and last layer of the block. 

 
Figure 1.2 Residual blocks 

 Large ResNets can have multiple different 
types of residual blocks. For example, Google’s 
Inception-ResNet v2 has 3 different residual blocks, 
named inceptions blocks a,b and c respectively. 
 Residual neural networks also to increase 
model accuracy by dealing with the vanishing 
gradient problem. When the model is first starting 
to learn, it can start by training a “shallower” 
version of itself by utilising the residual 
connections. This ensures a high enough gradient to 
perform large changes in its weights. As it learns 
more, it can make use of the layers within residual 
blocks to extract features more finely, enabling it to 
achieve a higher accuracy. 
 

MATERIALS 
 The convolutional neural networks were 
developed in Ubuntu 18.04. Training and testing 
was performed on the following hardware. 

1. CPU: Ryzen 1600 3.2GHz 
2. RAM: 16GB DDR4 2666Hz 
3. GPU: Nvidia GTX 1060 6GB 

All training and prediction was done with GPU 
acceleration (Nvidia 390 driver, CUDA 9.0) in a 
Jupyter notebook. 
 The neural networks were developed on 
Python 3.6.7 mainly using the tensorflow-backend 
library, keras. 
 
Additional Python Modules : 

● Neural Networks: Tensorflow, Keras 

● Calculations: NumPy, SciKit 
● Image Processing: MatPlotLib, Open-CV, 

skimage 
● File Processing: os, time 
● Misc: Progress Bar: tqdm Confusion 

Matrix: sklearn 
 

METHODOLOGY  
Preparing the Dataset 

 For our testing, we decided to find staircase 
image data corresponding to 4 different classes 

1. Right curving staircases 
2. Left curving staircases 
3. Straight staircases 
4. Negative samples (images which did not 

contain staircases but possible scenarios an 
indoor bot could face) 
To develop the dataset, we used 3 methods 

to obtain images. First is to use a web crawler to 
run through google images and extract images 
relevant to the respective classes. We then manually 
went through each image to verify its legitimacy. 
The second was to take videos of different angles of 
a real-life staircase, and periodically extract the 
frames at fixed intervals. Thirdly, for the curved 
stairs, we realised that a right curving stairs is a left 
curving stairs and vice versa, so we laterally 
inverted some of the curved staircase images to 
enlarge our dataset. These 3 techniques resulted in 
approximately 1000 images per class. 

The raw images were then formatted to a 
dimension of 299 x 299 pixels to fit the largest 
expected input out of our models. We opted to load 
the images in greyscale as we believed that colour 
was not relevant for our classification task.  
 A side-script was run to split the dataset into 
a training set, validation set and testing set in a ratio 
of 0.81 : 0.09 : 0.1. The images were imported into 
the testing programme as a generator with the 
generator. 
 To further improve our training dataset, we 
utilised real-time data augmentation on the training 
data with the ‘ImageDataGenerator’ function from 
the ‘keras.preprocessing.image’ library. The 
parameters we used were: 



1. rescale= 1./255 #Except for ResNet 
50 

2. horizontal_flip=False 
3. featurewise_center=True 
4. featurewise 

_std_normalisation=True 
5. rotation_range=20 
6. width_shift_range=0.2 
7. height_shift_range=0.2 
8. zoom_range=0.2 

 This image data generator was fit to a 
subsample of the training data (200 images x 4 
classes) to allow it to calculate an estimate of the 
standard deviation and mean of the training data. 

The rescale option ensured that the data was 
within the expected input range of the pretrained 
models. All models we tested expected input in the 
range of [0,1], with the exception of ResNet 50 
which expected input in the range [0,255]. This 
rescale option is the only option used for the 
validation and test data generators.  

It is important that horizontal_flip be set to 
false as a left curved staircase is a right curved 
staircase when laterally inverted. 

 
Model Architecture 

We carried out transfer learning of 4 
different models, with pretrained weights for the 
‘imagenet’ dataset by fitting them to our staircase 
datasets. These models acquired from 
“keras.applications”. 

1. Inception-Resnet v2 
2. Inception v3 
3. ResNet 50 
4. MobileNet v2 

Each model had its top dense layer removed and 
replaced with the following layers. 

1. Global average pooling 2D 
2. Dropout - 0.5 deactivation 
3. Dense - 1024, ReLU activation 
4. Dense - 4, softmax activation 

The training was carried out in 2 phases.  
 First, the base model layers were frozen, 
and the new layers were trained for 5 epochs with 
the ‘adam’ optimizer at learning rate 0.001 
(default). 

 Then, the top/last few layers of the base 
model were unfrozen and the model was trained 
again for 20 epochs or until the loss validation 
stopped decreasing (with a patience of 5 epochs). 
The optimizer used was ‘adam’ with a learning rate 
of 0.0001 as the model was already close to 
optimal. 
 The layers to be unfrozen were chosen by 
trying out several different values to find a closet 
optimal layer value. Note that due to limitations in 
GPU memory, we were unable to test out training 
the entire model for all models except for 
MobileNetv2.  
 

Model Section Layer 
Number 

Inception 
Resnet v2 

Everything after A 
reduction block 

275 

Inception v3 Everything after the 
last A inception 
block 

101 

ResNet 50 Everything after 
conv3_x 

80 

MobileNet v2 Everything after 
block 7 

73 

Table 2.0: Sections of models unfrozen for second 
phase of training 

We then compare the neural network 
models through the criterion of test accuracy, 
prediction runtimes, as well as displaying the 
results for each category in a confusion matrix.  

 
Model Evaluation Methodology 

Accuracy = Number of correct classifications/ Total 
number of Classifications 
 
Runtime is calculated by taking the average the 
time it takes to import and make predictions for 
images in the test set (413 images) sequentially. 
The images were all resized to 299x299 px before 
importing. The python function time.time()is 
used to measure the time taken. The following 
operations are performed for each image to predict 
and thus included in the time. 



img=image.load_img(os.path.join(data_dir,
img_name), target_size=(299,299), 
color_mode="grayscale") 
img=image.img_to_array(img) 
img/=255.0 
prediction=class_names[np.argmax(model.pr
edict([[img]])[0])] 

Where image is keras.preprocessing.image 
 
The confusion matrix is generated based on 
predicted and true values of images from the test 
dataset 
 
 

 
DATA AND RESULTS

Table 3.0: Dataset Size Information 

Dataset Number of Images 

 curved_left  curved_right negative straight total 

Training 80 64 97 86 3269 

Validation 832 832 873 732 327 

Test 114 114 93 92 413 

 
Table 3.1 Summary of Models and their Performance 

Model Name Inception-ResNet 
v2 

Inception v3 ResNet 50 MobileNet v2 

Number of Layers 785 316 180 160 

Number of Parameters 55,914,724 23,905,060 25,689,988 3,573,828 

Average Prediction 
Run-Time (s) 

0.0613146642218
4905 (4th) 

0.0295974400083
89746 (3rd) 

0.0289990076429
9074  (2nd) 

0.0251071464640
17634 (1st) 

Train Accuracy (%) 98.12 94.53 87.00 79.09 

Validation Accuracy 
(%) 

93.12 89.69 84.38 80.0 

Test Accuracy (%) 88.29 (1st) 86.59  (2nd) 82.44 (3rd) 77.56 (4th) 

  



Table 3.2.1 Confusion Matrix for Inception-ResNet v2 

True Class Predicted Class 

 curved_left curved_right negative straight 

curved_left 92 18 1 3 

curved_right 16 92 0 6 

negative 0 0 89 1 

straight  1 1 1 89 

 
Table 3.2.2 Confusion Matrix for Inception v3 

True Class Predicted Class 

 curved_left curved_right negative straight 

curved_left 91 11 7 5 

curved_right 15 89 5 5 

negative 0 0 90 0 

straight  1 1 5 85 

 
Table 3.2.3 Confusion Matrix for ResNet 50 

True Class Predicted Class 

 curved_left curved_right negative straight 

curved_left 66 43 1 4 

curved_right 7 99 1 7 

negative 0 0 89 1 

straight  2 2 4 84 

 
Table 3.2.4 Confusion Matrix for MobileNet v2 

True Class Predicted Class 

 curved_left curved_right negative straight 

curved_left 69 26 5 14 

curved_right 23 76 3 12 

Negative 0 0 88 2 

straight  2 2 3 85 



VISUALIZATIONS OF PREDICTIONS 
 

Predictions using Inception 3  

 
 
 

Predictions using Inception-Resnet v2  

 



Predictions using mobilenet v2 

 
 
 

Predictions using resnet 50 

 
 



DISCUSSION OF RESULTS  
From the test accuracy and average run 

time results, the trade-off between model accuracy 
and model speed is clear. While one would want a 
model with a high accuracy, in real world use in 
robotics, a model with a very low number of 
predictions per second could potentially cause the 
robot to be slower in processing and thus slower 
in moving around and performing its cleaning 
function. 
 Based on the results above, we believe that 
the most suitable model to use for the application 
of staircase cleaning robots would be the 
Inception v3 model. Its average run-time is only 
very slighly higher than ResNet 50’s average run-
time but is less than half of Inception-ResNet v2’s 

run-time. Furthermore, its accuracy is a very 
acceptable 86.6%, only falling 2% short of 
Inception-ResNet v2’s accuracy while being 4% 
higher than ResNet 50’s accuracy. 
 

CONCLUSION 
 In conclusion, we have performed transfer 
learning on 4 pre-trained keras models to enable 
them to detect and classify staircases in images. 
Ranked by accuracy, the models are: Inception-
Resnet v2, Inception v3, ResNet 50, MobileNet 
v2. Their ranking for speed is the inverse of their 
ranking for accuracy. We recommend inception 
v3 for real world use as it has a relatively high 
accuracy and low average prediction time.
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