
STAIRCASE IMAGE RECOGNITION
WITH CONVOLUTIONAL NEURAL NETWORKS

BRANDON TANG, REIDEN ONG
Temasek Junior College

ABSTRACT

Staircase image recognition has applications in robotics, enabling robots to detect and classify
staircases allows robots to plan their gait to climb up the stairs effectively. A popular way to perform object
image recognition is to utilise convolutional neural networks. In this paper, we compare the accuracy and
runtimes of 4 different pre-trained convolutional neural networks to investigate which would be best to use
for real world application in a staircase cleaning robot. We found that for the 4 models we tried, their
ranking for accuracy was the inverse of their ranking for prediction speed. Ranked by accuracy, the models
are: Inception-Resnet v2, Inception v3, ResNet 50, MobileNet v2. For real world use, we recommend
Inception-v3 with its relatively high accuracy and short prediction times.

INTRODUCTION

 A neural network (NN) is a data structure
which is used to determine relationships in a set of
data by training the network with a established
dataset, then allowing it to make predictions with
new sources of data. It is a popular form of
supervised machine learning.
 The basic structure of a NN is a directed,
layered graph where each node (i) takes input from
a set of neurons from the previous layer (J). Each
neuron then calculates its activation value by
applying a function on the summation of the
product of the output values (aj) of the nodes in J
the weight of the edge Wij where j is a member of
set J. This activation function can be a number of
different functions, including:

1. ReLU (Rectified Linear Unit)

2. Leaky ReLU

3. Random ReLU

4. Sigmoid

5. Hyperbolic Tangent

6. Linear

𝑦𝑦 = max(0,𝑥𝑥)

𝑦𝑦 = max(~0.1𝑥𝑥, 𝑥𝑥)

𝑦𝑦 = max(~0.1𝑥𝑥, 𝑥𝑥)

𝑦𝑦 =
1

1 + 𝑒𝑒−𝑥𝑥

𝑦𝑦 = tanh 𝑥𝑥

𝑦𝑦 = 𝑥𝑥

x1

x2

x3

a(2)
2

a(2)
1

a(2)
3 a(3)

3

Input Layer Hidden Layer Output Layer

1 1

a(3)
1

a(3)
2

Probability
that input
is class 1

Probability
that input
is class 2

Probability
that input
is class 3

Figure 1.0 Example of a multiclass neural
network

A image prediction NN is made up of layers
of nodes, which are similar to neurons in a human
brain, which the input (an image converted into an
array) is routed through, and as an output the
probabilities of the image being a certain class is
received.

Convolutional Neural Networks (CNNs) are
a form of neural networks specifically adapted for
image recognition purposes, utilising specific
features such as convolutions and pooling.
 The key layers of the CNN are the input
layer, convolution layer, ReLU layer, pooling layer,
and the output (dense, softmax activated) layer. The
input layer receives the raw pixel values of the
image with 4, 3 or 1 channels depending on colour
mode (RGBA, RGB, grayscale).

The convolution layer works by sliding a
filter across the width and height of the input
volume and computes the dot product between the
filter and the kernel at any position. This convolves
the original image into a feature map, which is a
mapping of where specific features of the image are
found. The convolutional layer can also act as
feature identifiers, such as curve detector filters etc.

The Rectified Linear unit (ReLU) activation
operation is used after every convolution operation
to remove negative values from the neurons by
running the function 𝑥𝑥 = max(0, 𝑥𝑥), where x is
the activation value. This helps to mitigate the
vanishing gradient problem that can occur when

training extremely deep models. The pooling layer
is a method used to downsample the resolution and
size of each feature map but still retain the most
important information. Various methods of pooling
exist, such as Max pooling, Average pooling, Sum
pooling.

 Figure 1.1: various pooling methods with

2x2 filters and a stride of 2

Pooling layers help to reduce the amount of
parameters, thus reducing the computational
complexity. As the resultant resolution is also
decreased, this also helps to prevent overfitting of
the model.
 Apart from just being convolutional neural
networks, the models we tested were also residual
neural networks, with the exception of Inception
v3.
 Residual neural networks (ResNets) are
inspired by pyramidal cells in the cerebral cortex.
In residual neural networks, some activations can
jump over layers and be added to the activation of a
deeper layer.

max(1, 0, 2, 5) = 5

 ResNets are generally structured into
various residual blocks, with a residual connection
between the first and last layer of the block.

Figure 1.2 Residual blocks

 Large ResNets can have multiple different
types of residual blocks. For example, Google’s
Inception-ResNet v2 has 3 different residual blocks,
named inceptions blocks a,b and c respectively.
 Residual neural networks also to increase
model accuracy by dealing with the vanishing
gradient problem. When the model is first starting
to learn, it can start by training a “shallower”
version of itself by utilising the residual
connections. This ensures a high enough gradient to
perform large changes in its weights. As it learns
more, it can make use of the layers within residual
blocks to extract features more finely, enabling it to
achieve a higher accuracy.

MATERIALS
 The convolutional neural networks were
developed in Ubuntu 18.04. Training and testing
was performed on the following hardware.

1. CPU: Ryzen 1600 3.2GHz
2. RAM: 16GB DDR4 2666Hz
3. GPU: Nvidia GTX 1060 6GB

All training and prediction was done with GPU
acceleration (Nvidia 390 driver, CUDA 9.0) in a
Jupyter notebook.
 The neural networks were developed on
Python 3.6.7 mainly using the tensorflow-backend
library, keras.

Additional Python Modules :

● Neural Networks: Tensorflow, Keras

● Calculations: NumPy, SciKit
● Image Processing: MatPlotLib, Open-CV,

skimage
● File Processing: os, time
● Misc: Progress Bar: tqdm Confusion

Matrix: sklearn

METHODOLOGY
Preparing the Dataset

 For our testing, we decided to find staircase
image data corresponding to 4 different classes

1. Right curving staircases
2. Left curving staircases
3. Straight staircases
4. Negative samples (images which did not

contain staircases but possible scenarios an
indoor bot could face)
To develop the dataset, we used 3 methods

to obtain images. First is to use a web crawler to
run through google images and extract images
relevant to the respective classes. We then manually
went through each image to verify its legitimacy.
The second was to take videos of different angles of
a real-life staircase, and periodically extract the
frames at fixed intervals. Thirdly, for the curved
stairs, we realised that a right curving stairs is a left
curving stairs and vice versa, so we laterally
inverted some of the curved staircase images to
enlarge our dataset. These 3 techniques resulted in
approximately 1000 images per class.

The raw images were then formatted to a
dimension of 299 x 299 pixels to fit the largest
expected input out of our models. We opted to load
the images in greyscale as we believed that colour
was not relevant for our classification task.
 A side-script was run to split the dataset into
a training set, validation set and testing set in a ratio
of 0.81 : 0.09 : 0.1. The images were imported into
the testing programme as a generator with the
generator.
 To further improve our training dataset, we
utilised real-time data augmentation on the training
data with the ‘ImageDataGenerator’ function from
the ‘keras.preprocessing.image’ library. The
parameters we used were:

1. rescale= 1./255 #Except for ResNet
50

2. horizontal_flip=False
3. featurewise_center=True
4. featurewise

_std_normalisation=True
5. rotation_range=20
6. width_shift_range=0.2
7. height_shift_range=0.2
8. zoom_range=0.2

 This image data generator was fit to a
subsample of the training data (200 images x 4
classes) to allow it to calculate an estimate of the
standard deviation and mean of the training data.

The rescale option ensured that the data was
within the expected input range of the pretrained
models. All models we tested expected input in the
range of [0,1], with the exception of ResNet 50
which expected input in the range [0,255]. This
rescale option is the only option used for the
validation and test data generators.

It is important that horizontal_flip be set to
false as a left curved staircase is a right curved
staircase when laterally inverted.

Model Architecture

We carried out transfer learning of 4
different models, with pretrained weights for the
‘imagenet’ dataset by fitting them to our staircase
datasets. These models acquired from
“keras.applications”.

1. Inception-Resnet v2
2. Inception v3
3. ResNet 50
4. MobileNet v2

Each model had its top dense layer removed and
replaced with the following layers.

1. Global average pooling 2D
2. Dropout - 0.5 deactivation
3. Dense - 1024, ReLU activation
4. Dense - 4, softmax activation

The training was carried out in 2 phases.
 First, the base model layers were frozen,
and the new layers were trained for 5 epochs with
the ‘adam’ optimizer at learning rate 0.001
(default).

 Then, the top/last few layers of the base
model were unfrozen and the model was trained
again for 20 epochs or until the loss validation
stopped decreasing (with a patience of 5 epochs).
The optimizer used was ‘adam’ with a learning rate
of 0.0001 as the model was already close to
optimal.
 The layers to be unfrozen were chosen by
trying out several different values to find a closet
optimal layer value. Note that due to limitations in
GPU memory, we were unable to test out training
the entire model for all models except for
MobileNetv2.

Model Section Layer
Number

Inception
Resnet v2

Everything after A
reduction block

275

Inception v3 Everything after the
last A inception
block

101

ResNet 50 Everything after
conv3_x

80

MobileNet v2 Everything after
block 7

73

Table 2.0: Sections of models unfrozen for second
phase of training

We then compare the neural network
models through the criterion of test accuracy,
prediction runtimes, as well as displaying the
results for each category in a confusion matrix.

Model Evaluation Methodology

Accuracy = Number of correct classifications/ Total
number of Classifications

Runtime is calculated by taking the average the
time it takes to import and make predictions for
images in the test set (413 images) sequentially.
The images were all resized to 299x299 px before
importing. The python function time.time()is
used to measure the time taken. The following
operations are performed for each image to predict
and thus included in the time.

img=image.load_img(os.path.join(data_dir,
img_name), target_size=(299,299),
color_mode="grayscale")
img=image.img_to_array(img)
img/=255.0
prediction=class_names[np.argmax(model.pr
edict([[img]])[0])]

Where image is keras.preprocessing.image

The confusion matrix is generated based on
predicted and true values of images from the test
dataset

DATA AND RESULTS

Table 3.0: Dataset Size Information

Dataset Number of Images

 curved_left curved_right negative straight total

Training 80 64 97 86 3269

Validation 832 832 873 732 327

Test 114 114 93 92 413

Table 3.1 Summary of Models and their Performance

Model Name Inception-ResNet
v2

Inception v3 ResNet 50 MobileNet v2

Number of Layers 785 316 180 160

Number of Parameters 55,914,724 23,905,060 25,689,988 3,573,828

Average Prediction
Run-Time (s)

0.0613146642218
4905 (4th)

0.0295974400083
89746 (3rd)

0.0289990076429
9074 (2nd)

0.0251071464640
17634 (1st)

Train Accuracy (%) 98.12 94.53 87.00 79.09

Validation Accuracy
(%)

93.12 89.69 84.38 80.0

Test Accuracy (%) 88.29 (1st) 86.59 (2nd) 82.44 (3rd) 77.56 (4th)

Table 3.2.1 Confusion Matrix for Inception-ResNet v2

True Class Predicted Class

 curved_left curved_right negative straight

curved_left 92 18 1 3

curved_right 16 92 0 6

negative 0 0 89 1

straight 1 1 1 89

Table 3.2.2 Confusion Matrix for Inception v3

True Class Predicted Class

 curved_left curved_right negative straight

curved_left 91 11 7 5

curved_right 15 89 5 5

negative 0 0 90 0

straight 1 1 5 85

Table 3.2.3 Confusion Matrix for ResNet 50

True Class Predicted Class

 curved_left curved_right negative straight

curved_left 66 43 1 4

curved_right 7 99 1 7

negative 0 0 89 1

straight 2 2 4 84

Table 3.2.4 Confusion Matrix for MobileNet v2

True Class Predicted Class

 curved_left curved_right negative straight

curved_left 69 26 5 14

curved_right 23 76 3 12

Negative 0 0 88 2

straight 2 2 3 85

VISUALIZATIONS OF PREDICTIONS

Predictions using Inception 3

Predictions using Inception-Resnet v2

Predictions using mobilenet v2

Predictions using resnet 50

DISCUSSION OF RESULTS
From the test accuracy and average run

time results, the trade-off between model accuracy
and model speed is clear. While one would want a
model with a high accuracy, in real world use in
robotics, a model with a very low number of
predictions per second could potentially cause the
robot to be slower in processing and thus slower
in moving around and performing its cleaning
function.
 Based on the results above, we believe that
the most suitable model to use for the application
of staircase cleaning robots would be the
Inception v3 model. Its average run-time is only
very slighly higher than ResNet 50’s average run-
time but is less than half of Inception-ResNet v2’s

run-time. Furthermore, its accuracy is a very
acceptable 86.6%, only falling 2% short of
Inception-ResNet v2’s accuracy while being 4%
higher than ResNet 50’s accuracy.

CONCLUSION
 In conclusion, we have performed transfer
learning on 4 pre-trained keras models to enable
them to detect and classify staircases in images.
Ranked by accuracy, the models are: Inception-
Resnet v2, Inception v3, ResNet 50, MobileNet
v2. Their ranking for speed is the inverse of their
ranking for accuracy. We recommend inception
v3 for real world use as it has a relatively high
accuracy and low average prediction time.

Acknowledgements

We would like to thank our mentors Dr Ilyas, Dr Mohan and all other researchers at SkunkWorks
Laboratory in SUTD for their guidance throughout the project. We would also like to thank our school
Temasek Junior College for giving us the opportunity to participate in this project.

