

 1

Figure 1: Diagram of different encoding methods

ACOUSTIC BEACONING

Tang Yu Han Brandon, Reiden Ong, Tan Yong Xin1

1Temasek Junior College, 22 Bedok South Road, 469278

ABSTRACT
 This project compares the effects of different parameters and techniques (i.e. the
parameters of Baud rate, start sequence length, frequency used with MP3 compression and bit
error threshold.) on the accuracy of acoustic beaconing using binary frequency shift keying.
These parameters include the baud rate of data transmitted, the length of a start sequence used to
identify the start of the data as well as the frequency of carrier signals used. Testing with lossy
compression was also carried out. To accomplish this, we simulated different encoding and
decoding methods in a Python script, testing the robustness of the process with simulated white
noise of varying powers, measured using power ratio which is the ratio of the Root-Mean-Square
of the signal over the Root-Mean-Square of the noise signal. Key results are that MP3
compression does not significantly affect the waveform such that the frequencies cannot be
detected, accuracy of decoding increases with decreasing baud rate, the length of the start
sequence is proportional to the accuracy of the decoding and proportional to packet loss rate.

INTRODUCTION
Acoustic beaconing refers to the transmission of data through sound. Data (in this case

binary data) is encoded into a sound wave, which is then transmitted by a speaker, received by a
microphone, and then decoded again to the get the original data.

With the widespread use of microphone-equipped devices, there is many potential
applications of acoustic beaconing for data communication. It can be used for both antagonistic
and collaborative ways. For example, in a collaborative use scenario, it can be used to selectively
transmit information to visitors of a museum depending on the exhibit they are looking at. This
can be done by installing a transmitter at each exhibit to play a sound signal and having a
microphone receiver on a hand-held device (which the visitor holds), the device will then decode
the message from the encoded signal and display it on the screen. However, this can also be used
for nefarious purposes such as secretly taking information from a mobile phone. Information can
be exploited without a person’s knowledge by transmitting the sound wave at an extremely high
or low frequency (beyond the range of frequencies audible to humans). This can also be used to
secretly track the location of people by using an application on a mobile phone or tablet that
records sound. This could be used in behavioural analysis, allowing shop owners to track how
often customers visit a specific aisle. It may also provide more evidence for crime scene
investigations, providing information of the locations of suspects which may act as a crucial
alibi.

\There are multiple encoding options available for this, including frequency shift keying,
phase shift keying and amplitude shift keying.

 2

Figure 2: Diagram of packet structure

Amplitude shift keying is a form of amplitude modulation which represents data as
variations of amplitude. This makes it easily disrupted by background noise level, causing the
encoded message to have errors.

Phase shift keying transmits data by modulating the phase of the reference signal by
varying the sine and cosine inputs and stipulated points of time. This severely limits the number
of signals we can use and has a more complicated decoding process. Thus, as both amplitude
shift keying and phase shift keying have many drawbacks and are not as suited for
implementation in our research project, leading us to select frequency shift keying as our
encoding method.

Frequency shift keying is a form of frequency modulation. It works by representing
different symbols with different frequencies in a carrier signal. The carrier signal can then be
sampled for its frequency at different times to obtain the original message sent. The benefits of
frequency shift keying are that it can be adapted for a wide variety of scenarios, such as changing
the frequencies so that they do not clash with other noises of the same frequency, as well as
being able to have multiple frequencies for expansion purposes (E.G. Quadrature Frequency shift
keying, which uses 4 frequencies).

MATERIALS AND METHOD

Software required
• Python 3.6+
• Python libraries: SciPy, matplotlib
• Audio converter: FFmpeg
• Python script (attached to appendix)

Overview of flow of python script code

For each set of parameters / optimisations (i.e. baud rate, frequency, bit error threshold
and start sequence length) we choose to use for encoding and decoding, our code sends 50
packets of data. These parameters included the baud rate, signal carrier frequencies, sampling
rate, etc. Each packet consists of a start sequence, meant to identify the starting point of the
packet, as well as a message, encoded in bits. A packet is considered “received” when our
program is able to identify the start sequence associated with the packet. The bit error rate of the
trial is determined by the arithmetic mean of the bit error rates of packets which are received,
achieved via bitwise comparison of the original bit message and the decoded bit message.

This would allow for easy comparison of the effects of the optimisations.

Generating binary data
The data sent and transmitted was a 30-bit long binary bit message, which was generated

using a seeded pseudorandom number generator in from a python library. Across various packets
set within each bit level, the bit message was varied by changing the random seed, ensuring that
the results could be accurately replicated with different bit messages. However, across different
trials such as different noise power levels, the original seed remains to ensure fair and accurate
testing.

 3

Figure 4: Diagram of our original signal

Figure 3: Graph of an example of the start sequence

01001100011100001111

To be able to identify the start of each packet, a start sequence is used. The start sequence

is a binary message of adjustable length in a difficult to replicate pattern, which is added on to
the start of the bit message to allow for the recognition of the bit message in a soundwave.

The start sequence consists of a specific
pattern of 0 and 1 bits. Starting with a 1 bit,
an increasing number of 0 or 1 bits are added
subsequently for an increasing segment of
the code. E.g. 10, to 101100, to
101100111000. This particular pattern was
used as it is non-translatable, with increasing
effectiveness with increasing length, thus
distinguishing it from the bit message by
reducing the probability of it clashing with
the randomly generated bit message.

The sending of multiple packets
instead of an individual long string of bits,
increase robustness in asynchronous
communication. We test for packet loss, in
terms of the percentage of start sequences
identified (as being a start sequence) out of
the total number of packets sent.

Encoding data

As our code uses multiple carrier frequencies, we used orthogonal frequency digital
multiplexing (OFDM). Using this method, the frequencies for the carriers are selected such that
they are orthogonal to one another, means that there is no intersymbol interference (ISI) between
the 2 different frequencies used. As such, this allows us to perform the fourier transform
accurately without the use of an apodization window as each frequency does not contribute to the
amplitude when measuring the other frequency. To achieve orthogonality, the difference in
frequencies has to be an integer multiple of the baud rate.

Parameters to consider:

1. Sampling rate (number of samples in signal per second)
2. Baud rate (the number of symbols per second)
3. Frequencies used to represent 1 and 0

Bit elements

0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1

 4

𝜔𝜔(𝑡𝑡) =
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

For all out testing, we used the same sampling rate of 44100 Hz. Although this is
computationally intensive and would increase the time needed to run the code, it allowed us to
get a large number of samples per second, increasing the accuracy of our experimentation. By
the Nyquist-Shannon sampling theorem, the sampling rate must be greater than twice the
maximum frequency of the signal to have enough information to deduce the amplitude and
frequency of the wave, thus, choosing this particular sampling rate also allows for our
frequencies to range up to 20000 Hz, allowing us wider range of frequencies to experiment with.

To encode the data as a sound wave, we combined carrier sine waves of 2 different
frequencies (one for each symbol), each with the time of baud rate seconds, while keeping the
phase of the wave continuous.

𝜙𝜙(𝑡𝑡) = � 𝜔𝜔(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑥𝑥

0
= � 𝜔𝜔(𝑡𝑡) 𝑑𝑑𝑑𝑑

𝑇𝑇×𝑠𝑠𝑠𝑠

𝑡𝑡=0

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ,
𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,

𝜔𝜔 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

Since the angular frequency of the wave is the rate of change of the phase of the wave, the
definite integral from 0 to the time in question of the angular frequency of the wave would evaluate
to the phase of the wave. For our research purposes, we used discrete data with the angular frequency
of the waveform being a step function.

Thus, a Riemann sum of the angular frequency of the wave would result in an exact phase.
This results in a soundwave with different frequencies which code for different symbols (1 and 0) in
a continuous phase. The waveform is exported as a .wav file using SciPy, this file format is
uncompressed and lossless and thus maintains complete accuracy of the data.

To test the effect of lossy audio compression, we converted the generated wav file into an
mp3 format (lossy compression) and back into a wav format using FFmpeg, at a bit rate of 64 kbps
(default). When converting the .wav file to a .mp3 file, the original signal file is compressed, the
accuracy of specific components of sound which are not within hearing capabilities of most people
are reduced through approximation. Furthermore, frequencies masked by stronger tones will also be
removed, following the psychoacoustic model. This will cause some amount of data to be lost.

White noise is generated using a seeded pseudorandom number generator which generates
white noise according to a normal distribution. This noise has a mean of 0 and a standard deviation of
1. The noise wave is then multiplied by an exponential factor for the different powers of white noise
and added to the wave. The resultant soundwave is then normalized to a sound wave to have a root-
mean-square value equal to the original wave.

Decoding data

The data received comes in the form of a .wav soundwave, which is read through a python
library function into an array of amplitude of the wave against time. The wave is then repeatedly
processed using the Fourier transform1 to obtain the amplitude of 𝒇𝒇𝟏𝟏 and 𝒇𝒇𝟎𝟎 of that interval of the
wave, resulting in streams of values of 𝒇𝒇𝟎𝟎 and 𝒇𝒇𝟏𝟏, as shown in Figures 5 and 6.

1 A Fourier transform decomposes a signal into the frequencies that it consists of, and it
represents the amplitude of that frequency present in the original function. Thus, using Fourier
transforms can allow us to calculate the proportions of different frequencies in the signal and deduce
the bit present at a specific time.

 5

Figure 7: Visual representation of how our results are
compared

Figure 5: Graph of array of f0 Figure 6: Graph of array of f1

Figure 8: Graph of bitstream

𝐺𝐺(𝑓𝑓) = � 𝑔𝑔(𝑡𝑡) × 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑
𝑣𝑣

𝑢𝑢
= �𝑔𝑔(𝑡𝑡) × 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑

𝑣𝑣

𝑡𝑡=𝑢𝑢

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 [𝑢𝑢, 𝑣𝑣] 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑔𝑔(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,

𝑓𝑓 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

These results are compared, with the
optional optimization of a hysteresis
which we will not explore in this project.
This results in a “stream” of bits collected
through the repeated sampling (which we
call the bitstream).

The bitstream is then analysed by

sampling at fixed intervals with a sliding
window to check for the start sequence.
A popularity voting mechanism is
implemented here.

This works by calculating the
arithmetic mean of the bit stream bits
across the time for a bit message bit. If
the mean is greater than 0.5, it would
mean that majority of the stream bits
vote that the message bit codes for a 1,
thus the program treats that sequence as a
1 in the decoded bit message, and vice
versa for a mean less than 0.5.

We did not require the detected start sequence to exactly match the generated start
sequence, but rather has a variable bit error threshold of 20% which allows room for error in the
detection of the start sequence. This is such that only 80% of the start sequence has to match,

Bit elements
Bit elements

 6

Baud rate Baud rate

Figure 9: Graph of bit error rate against power ratio
for different values of baud rate

Figure 10: Graph of packet loss against power ratio
for different values of baud rate

increasing the margin of error and allowing a few bits to be lost when decoding, without
preventing the start sequence from being detected.

Once the start sequence is identified, repeated sampling continues for the next message
length of message bits.

Calculating and displaying results

For each packet received where the start sequence is identified, the accuracy of the
decoded bit message is determined through the bit error rate, from a bit error function. The
derived bit message is compared bitwise with the original bit message, and is terminated at the
end of the message, and expresses the bit error rate as the percentage of wrong bits over the total
bits.

A graph is then plotted of the average bit error rate across all the packets for each power
level against the logarithmic scale of loud noise in decibels.

Flowchart of program for each packet tested

For each packet sent

Encode to mp3
and convert back
to wav (if needed)

baud, k, seed,
msglen,
startlen,

sampling rate

Decoding
sound file

Repeated
Discrete Fourier
transforms on

wave

Generate start
sequence

Generate
message

Sound file
generated

White
noise

generated

Seed, noise
power

Array of
amplitudes

of f0

Array of
amplitudes

of f1

Bit wise Comparison to
generate bit stream

(digitalisation)

Stream of
bits to

represent
message

Converting
bit stream

to bit
message

Encode
sound wave

Popularity voting to
determine average (bit
message) bit value over

multiple stream bits

Sliding window
algorithm to
locate start
sequence

Start sequence
identified?

Start sequence
bit error

threshold

If not, packet lost

Else continue and
generate bit

message

Compare
generated bit
message to
original bit
message

Continue to next packet / power
level / independent variable

Signal encoding Creation of bit stream (digitalisation) Decoding bit message (digital manipulation)

RESULTS & DISCUSSION

Baud results (Fig 9, Fig 10)

 7

Figure 11: Graph of bit error rate against power
ratio for different values of start sequence length

In terms of the value of Baud rate, data shows (Fig 9, Fig 10) that a lower value would

result in more accurate decoding as the popularity vote used in the decoding could help with
ensuring that most of the message would be decoded accurately. Furthermore, a lower baud rate
greatly helps to ensure that the start sequence is decoded correctly. This is especially true is a
high bit error threshold (greater than 5) is used since wrongly decoded start sequences can easily
be considered as being correct, hence robust decoding of the start sequence is required.

However, a lower baud rate would also result in a longer time required to send the
message and would make decoding the message more computationally intensive due to the
increased number of operations (particularly fourier transforms) needed. Furthermore, in the case
of intermittent pulses of interference, a low baud rate results in lesser accuracy whereas a signal
of high baud rate could be used to transfer data in the time between the pulses. Thus, when
choosing a value of baud, one would have to consider the practical usage of their code and find a
middle ground between speed and computational complexity and accuracy of results as well as
considering any special types or patterns of interference.

Start sequence length results (Fig11, Fig 12)

In terms of the start sequence length, a longer start sequence length results in more accurate

decoding, as the longer start sequence is more unique and harder to be replicated in other parts of the
bit message, and the exact start location is more accurate, thus the information detected is more of the
information of the bit message, and less of random bits created by the white noise interference.
However, this may be required in the case where the data received in a packet must be very accurate.

However, it can be seen that the higher start sequence length also results in greater packet
loss rates. This is expected and can be explained through how since the start sequence is longer, there
is a greater probability of having a wrong bit, which leads to a greater probability of not fulfilling the
bit error threshold and thus not recognising the start sequence.

Thus, various start sequence lengths would be ideal for different situations. Longer start
sequences could be ideal in scenarios where the accuracy of the information received is of utmost
importance, and that packet loss can be neglected in favour of more accurate information. Shorter
start sequences would thus be ideal for cases where packet loss has to be kept to a minimum, and the
accuracy of the data is not strictly necessary. Thus, to choose an optimal value of baud, the accuracy
against the packet loss of the data must be considered per the specific needs of the acoustic beacon.

Figure 12: Graph of packet loss against power ratio
for different values of start sequence length

 8

Figure 14: Graph of packet loss against power ratio for
different values of frequencies (ranging from 136-5044)

Figure 17: Graph of bit error rate against power ratio
for different values of frequencies (ranging from 136-
5044) with MP3 compression

Figure 18: Graph of packet loss against power ratio
for different values of frequencies (ranging from 136-
5044) with MP3 compression

Figure 13: Graph of bit error rate against power ratio
for different values of frequencies (ranging from 136-
5044)

MP3 compression with Frequency results (Fig13, 14, 17, 18)

The hypothesis was that frequencies masked by stronger tones will also be removed,

following the psychoacoustic model, where tones at frequencies outside of the audible range of
humans are removed to save space.

This would cause some amount of data to be lost, especially for extremely high and low
frequencies, removing the data encoded in these high frequencies. However, this data lost is not
significant, as seen in the similarities between Fig 17 and 18 with Fig 13 and 14 respectively,
where MP3 compression only results in a slightly steeper curve which ends at a bit error rate of
35%, as compared with the normal 30% without MP3 compression.

Thus, MP3 compression does not affect much of the frequency and clarity of the signal,
such that even when passed through MP3 encoding, the waveform is able to retain enough of the
original shape such that data can still be accurately decoded.

 9

Figure 18: Graph of bit error rate against bit
error threshold for start sequence detection
(ranging from 0 to 40%)

Figure 19: Graph of packet loss against bit error
threshold for start sequence detection (ranging from 0
to 40%)

Bit error threshold results (Fig 18 and Fig 19)

 In terms of bit error rate, a lower bit error threshold would provide lower bit error rates
with greater accuracy. This is due to the fact that for lower bit error threshold rates, the start
sequence is detected with greater accuracy as there is less room for error in detecting the start
sequence, thus it is more unlikely for the resultant bit stream to be translated left or right, or
being detected at a wrong location.
 In terms of packet loss rates, a greater bit error threshold would result in greater packet
loss rates. This is because greater bit error thresholds allow for more error in the detection of the
start sequence, such that even if a few bits are off it can be written off. Especially for the results
of bit error threshold of 30 and 40, as 30 and 40 are close to the random bit error rates, it has a
great chance of detecting nearly anything as a start sequence.
 In choosing a value of bit error threshold, one has to find balance between the bit error
rates and packet loss, as lower bit error threshold results in greater accuracy in message
decoding, but a lower chance of receiving the packet

Conclusion
 The results of the project have been in-line with current scientific knowledge, and possess
many applications, particularly in the creation of start sequences and choosing baud rates, as in
various scenarios those can be varied to different effects (E.G. having a low value of baud to
ensure accuracy of data when time is not an issue). Possible follow-up actions could be to further
examine the results of more extensive MP3 compressions, as well as detection of sound in real
world scenarios (E.G. detection of handphones).

ACKNOWLEDGEMENTS

We would like to thank our mentor, Dr Hofbauer Wulf for his guidance and support
throughout the whole project.

 We would also like to thank our school and the mentors, Mr Shawn Neo and Mrs Chan
Boon Hwee for giving us this opportunity and their support during the research project

 10

REFERENCES
"FSK - Frequency Shift Keying." André-Marie Ampère - T&M Atlantic. Accessed August 01,
2018. http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10422.

 "PSK - Phase Shift Keying." André-Marie Ampère - T&M Atlantic. Accessed August 01,
2018. .http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10478

"ASK - Amplitude Shift Keying." André-Marie Ampère - T&M Atlantic. Accessed August 01,
2018. .http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10420

ANNEX
Table 1: List of variables in our code

Variable Symbol Default value Sampled range

Standard Variables

Sampling rate sr 44100

Baud rate
 (signals per second)

baud 45.45 20-400

Frequencies of logic 1
and logic 0

𝒇𝒇𝟎𝟎
𝒇𝒇𝟏𝟏

baud*3
baud*4

Difference in
frequencies bin

df baud 3-111

Bit message length msglen 30 -

Bit message random
seed

original_seed_message 10 -

Length of start sequence
increment

start_len 20 20 – 56

Noise Variables

Minimum Noise power noise_power_start 10^1.2 -

Maximum Noise power noise_power_end 10^2.0 -

Total Noise samples total_samples 30 -

Digitisation Variables

http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10422
http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10422.http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10478
http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10422.http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10478

 11

Fourier transform
window length

ftlength 1000 -

Squelch minimum noise
threshold

threshold 0 (not in use) -

Hysteresis center hysteresis 0 (not in use) -

Bit error threshold for
detecting start sequence

biterr_threshold 20% 0% to 40%

Main code
import scipy
import scipy.signal
import scipy.io.wavfile
import random
import time
import matplotlib.pyplot as plt
import csv
import matplotlib
matplotlib.rcParams.update({'font.size': 22})

func = __import__("Decoding FSK 7 mp3 Functions") #import functions as func.

def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█'):
 """
 Call in a loop to create terminal progress bar
 @params:
 iteration - Required : current iteration (Int)
 total - Required : total iterations (Int)
 prefix - Optional : prefix string (Str)
 suffix - Optional : suffix string (Str)
 decimals - Optional : positive number of decimals in percent complete (Int)
 length - Optional : character length of bar (Int)
 fill - Optional : bar fill character (Str)
 """
 percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total)))
 filledLength = int(length * iteration // total)
 bar = fill * filledLength + '-' * (length - filledLength)
 print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = '\r')
 # Print New Line on Complete
 if iteration == total:
 print()

 12

resuming = True
mp3 = True
#basic variables
sr = 44100
baud = 45.45 #symbols per second
OFDM_multiplier = 3
f0 = baud*OFDM_multiplier #Frequency of 0 bit
f1 = baud*(OFDM_multiplier+1) #Frequency of 1 bit
msglen = 30 #number of bits in message to receive\
original_seed_msg = 10
start_len =4
#Experiment config variables
noise_power_start = 1.2 #10**noise_power is the power of white
noised used
noise_power_end = 2.0 #0.5 to 0.9
total_samples = 30 #total number of samples to do

#Digitalisation Variables
ftlength = 1000 #samples in signal per ft
threshold = 0 #for squelch --> lower == quieter signals can
go through
hysteresis = 0 #(0, 0.5) larger --> greater difference from 0.5
(for bit_ratio) needed for hysteresis

#Stream to bitmsg variables
biterr_threshold = 20 #percentage similarity to start sequence
needed to count as identified
pop_width = 100 #pop_vote over the center pop_width
percent of stream bits for every message bit
pop_step = 1 #pop_vote sum --> for index in range (start,
end, step)

#Selecting independant variable for analysis
var_name = "frequency"
lowest_iv = 3 #lowest value for iv
highest_iv = 111 #highest value for iv
total_iv = 5 #total number of ivs (between lowest and
highest) to test
setiv = scipy.linspace(lowest_iv, highest_iv, total_iv) #set of iv values to test
total_packet = 50

#Initial variables
iv_counter = 0
spectrogram_biterr = []

 13

spectrogram_bitsim = []
spectrogram_packet_received = []
points = scipy.linspace(noise_power_start,noise_power_end,total_samples)
point_axis = scipy.zeros(0)
rms = 0
original_signal = []
total_increment = total_samples*total_iv*total_packet
current_increment = 0

#Main program
time_start = time.time() #Start time variable
print("--")
print("Independant Variable being tested:", var_name)
print(lowest_iv, "<", var_name, "<", highest_iv)
print("--\n")

def resume():
 with open('IV file saver.csv') as csvfile:
 csv_reader = csv.reader(csvfile, delimiter='|')
 counter = 0
 for row in csv_reader:
 if counter == 0:
 finished_ivs = int(''.join(row))#how many ivs done
 elif counter==1:
 spectrogram_biterr = eval(row[0])
 elif counter==2:
 spectrogram_bitsim = eval(row[0])
 elif counter==3:
 spectrogram_packet_received = eval(row[0])
 counter+=1
 print ("RESUMINGGG")
 if finished_ivs != total_iv:
 print("resuming from", finished_ivs+1)
 else:
 print ("ready to display results")

 return finished_ivs,spectrogram_biterr,spectrogram_bitsim,spectrogram_packet_received

if (resuming):
 finished_ivs,spectrogram_biterr,spectrogram_bitsim,spectrogram_packet_received = resume()
for iv in setiv:
 '''PLEASE SET THE INDEPENDANT VARIABLE HERE'''

 f0 = baud*iv #Frequency of 0 bit
 f1 = baud*(iv+1)

 14

 iv_counter+= 1
 if resuming:
 if finished_ivs == total_iv:
 break
 elif (iv_counter<= finished_ivs):
 current_increment += total_packet*total_samples
 continue

 #resetting variables
 biterr_arr = []
 bitsim_arr = []
 packet_received_arr = []
 counter = 0
 for x in points:
 seed_msg = original_seed_msg
 counter += 1
 packet_received = 0 #number of packets received for this point
 biterr_sum = 0
 bitsim_sum = 0
 print("Power:", str(counter)+'/'+str(total_samples))
 print ("Independant Variable Value:", iv)
 print("Independant Variable Val", iv_counter, "/", total_iv)
 for packet_no in range(total_packet):
 print ("packet:", packet_no+1)
 seed_msg += 1
 #Creation of sound file
 original_signal = func.encode(sr, baud, f1, f0, msglen, start_len, seed_msg)
 #Creation of start codon
 start = []
 for q in range(1,start_len):
 start = start + q*[0]
 start = start + q*[1]

 #MP3 and Importing file

 if mp3:
 func.mp3_encode()
 sr, original_signal = scipy.io.wavfile.read("sample.wav")
 original_signal = original_signal.astype(scipy.float64)
 original_signal = scipy.asarray([x/32767 for x in original_signal])

 dt = 1/sr

 original_signal_rms = (func.rms(original_signal))**2 #getting the average
power of the original signal

 15

 rms = original_signal_rms
 signal = scipy.zeros(len(original_signal))

 #white noise generator
 scipy.random.seed(seed_msg)

 noise_signal = scipy.random.normal(0,1,size = (sr*20))
 noise_power_amplifier = 10**x
 for i in range (len(original_signal)):
 signal[i] = (noise_power_amplifier**0.5) *noise_signal[i] + original_signal[i]

 #Creating original_bitmsg
 original_bitmsg = scipy.zeros(0) #array for original bit message
 random.seed(seed_msg) #seed for generating random
sequence
 for i in range(msglen):
 original_bitmsg = scipy.append(original_bitmsg,random.randint(0,1))

 #Calculations
 power_ratio = original_signal_rms/(func.rms(signal)**2) #power ratio
decreases with noisier signal
 amplitude_ratio = power_ratio**0.5 #power proportional to
amplitude squared
 signal = signal*amplitude_ratio

 #Analysis of signal---------------------
 #print('fourier start')
 arrf0 = abs(func.fourier(signal,f0,sr,ftlength,25))
 arrf1 = abs(func.fourier(signal,f1,sr,ftlength,25))
 print('fourier')

 #Cleaning Stream------------------------
 stream, bitratioarray = func.create_stream(arrf0, arrf1, f0, f1, threshold, hysteresis)
 #tream = func.streamclean(stream,cleanwindow)
 t = scipy.linspace((ftlength/ (2*sr)), (signal.size/sr), len(stream))

 #Getting Bitmsg From Stream-------------
 stream_dt = dt*len(signal)/len(stream)
 bitmsg = func.get_bitmsg(stream, baud, start, stream_dt, msglen, biterr_threshold,
pop_width, pop_step)
 if bitmsg != 2:
 #Accuracy Analysis----------------------
 biterr_rate = func.bit_error_rate(original_bitmsg,bitmsg)
 bit_similarity = func.string_similarity(bitmsg,original_bitmsg)
 #Recording of results-------------------
 biterr_sum += biterr_rate

 16

 bitsim_sum += bit_similarity
 packet_received += 1

 #print (str(bit_similarity)+ '% bit similarity')
 print (str(scipy.round_(biterr_rate, 1))+"% bit error rate")
 else:
 print ("Packet lost")
 #printProgressBar(current_increment, total_increment, prefix = 'Progress:', suffix =
'Complete', length = 50)
 current_increment+= 1

 #Showing results------------------------

 print('\n')
 if (packet_received > 0):
 biterr_arr.append(biterr_sum/packet_received)
 bitsim_arr.append(bitsim_sum/packet_received)
 else:
 biterr_arr.append(100)
 bitsim_arr.append(0)
 packet_received_arr.append(100*packet_received/total_packet)
 print("POINT DONE\n")
 #TIME ESTIMATE
 time_end = time.time()
 #print("-----------------TIME TAKEN:", int((time_end-time_start)/60), "minutes and ",
int((time_end-time_start))%60, "Seconds")
 time_taken = time_end - time_start
 time_per_point = time_taken / ((iv_counter-1)*total_iv + counter)
 time_remaining = time_per_point*(total_iv - iv_counter)*(total_samples) + (total_samples -
counter)*time_per_point
 time_remaining = "TIME REMAINING: " + str(int((time_remaining)/60))+ " minutes and
"+ str(int(time_remaining)%60)+ " Seconds"
 printProgressBar(current_increment, total_increment, prefix = '', suffix = time_remaining,
length = 50)
 print ("\n")

 spectrogram_biterr.append(biterr_arr)
 spectrogram_bitsim.append(bitsim_arr)
 spectrogram_packet_received.append(packet_received_arr)
 with open('IV file saver.csv', 'w', newline='') as csvfile:
 spamwriter = csv.writer(csvfile, delimiter='|', quotechar=' ',
quoting=csv.QUOTE_MINIMAL)
 spamwriter.writerow([iv_counter])
 spamwriter.writerow([spectrogram_biterr])

 17

 spamwriter.writerow([spectrogram_bitsim])
 spamwriter.writerow([spectrogram_packet_received])
 print ("Independant variable value finished")
 print ("--")

time_end = time.time()
print("TIME TAKEN:", int((time_end-time_start)/60), "minutes and ", int((time_end-
time_start))%60, "Seconds")

#Colour Mesh (WIP)
def show_mesh_biterr():
 plt.pcolormesh(noise_power_amplifier_axis, setiv, spectrogram_biterr)
 plt.title("Spectrogram of bit error against noise amplifier for different IVs")
def show_mesh_bitsim():
 plt.pcolormesh(noise_power_amplifier_axis, setiv, spectrogram_bitsim)
 plt.title("Spectrogram of bit similarity against noise amplifier for different IVs")

#Multiple Line Graph (for displaying results)
original_signal = func.encode(sr, baud, f1, f0, msglen, start_len, original_seed_msg)
rms = func.rms(original_signal)
scipy.random.seed(original_seed_msg)
noise_signal = scipy.random.normal(0,1,size = (sr*20))
noise_signal = noise_signal[:len(original_signal)]
power_axis = [10*scipy.log10((10**x)*func.rms(noise_signal)**2/(rms**2)) for x in points]

def show_biterr():
 plt.cla()
 for ivcounter in range(total_iv):
 plt.plot(power_axis,spectrogram_biterr[ivcounter], label = str(setiv[ivcounter]), alpha = 0.6)
 legend = plt.legend(loc='center left', fontsize='large')
 plt.title("Graph of bit error against power ratio (dB) for different values of "+ var_name + "
with MP3 compression", fontsize=20)
 plt.xlabel("power ratio (dB)", fontsize=20)
 plt.ylabel("Bit Error", fontsize=20)
 plt.show()
def show_bitsim():
 plt.cla()
 for iv_counter in range(total_iv):
 plt.plot(power_axis,spectrogram_bitsim[iv_counter], label = str(setiv[iv_counter]), alpha =
0.6)
 legend = plt.legend(loc='center left', fontsize='large')
 plt.title("Graph of bit similarity against power ratio (dB) for different values of " + var_name ,
fontsize=20)
 plt.xlabel("power ratio (dB)", fontsize=20)
 plt.ylabel("Bit Similarity", fontsize=20)
 plt.show()

 18

def show_packet():
 plt.cla()
 for iv_counter in range(total_iv):
 plt.plot(power_axis,spectrogram_packet_received[iv_counter], label =
str(setiv[iv_counter]), alpha = 0.6)
 legend = plt.legend(loc='center left', fontsize='large')
 plt.title("Graph of packet loss against power ratio (dB) for different values of " + var_name + "
with MP3 compression", fontsize=20)
 plt.xlabel("power ratio (dB)", fontsize=20)
 plt.ylabel("Percentage of packets received" , fontsize=20)
 plt.show()

#debugging**
**
**
def debug(): #list of debugging tools
 print ('debugging tools:' + '\n' + 'signal' + '\n' + 'f01' + '\n' + 'bitratio'+ '\n' + 'stream'+ '\n' +
'bitmsg'+'\n' + 'biterr'+'\n' + 'bitsim'+'\n' + 'multiplot (beta)')
 command = input()
 command = str(command)
 if command == 'signal': signal_debug()
 elif command == 'f01': f01_debug()
 elif command == 'bitratio': bitratio_debug()
 elif command == 'bitmsg': bitmsg_debug()
 elif command == 'stream': stream_debug()
 elif command == 'biterr': biterr_debug()
 elif command == 'bitsim': bitsim_debug()
 elif command == 'multiplot':
 print ('available tools for multiplot:' +'\n'+ 'bitratio'+ '\n' + 'stream'+ '\n' + 'bitmsg'+'\n' +
'biterr'+'\n' + 'bitsim')
 plt.figure(1)
 plt.subplot(211)
 command = input()
 command = str(command)
 if command == 'bitratio': bitratio_debug()
 elif command == 'bitmsg': bitmsg_debug()
 elif command == 'stream': stream_debug()
 elif command == 'biterr': biterr_debug()
 elif command == 'bitsim': bitsim_debug()
 plt.subplot(212)
 command = input()
 command = str(command)
 if command == 'f01':f01_debug()
 elif command == 'bitratio': bitratio_debug()
 elif command == 'bitmsg': bitmsg_debug()

 19

 elif command == 'stream': stream_debug()
 elif command == 'biterr': biterr_debug()
 elif command == 'bitsim': bitsim_debug()

 plt.show()

def signal_debug(): #graph of soundwave
 plt.figure(1)
 plt.subplot(211)
 plt.plot(original_signal)
 plt.title('original signal')
 plt.subplot(212)
 plt.plot(signal)
 plt.title('read from wav signal')

def f01_debug(): #graph of frequency 1 and frequency 0
 plt.figure(1)
 plt.subplot(211)
 plt.plot(t, arrf1)
 plt.title('array of f1')
 plt.subplot(212)
 plt.plot(t, arrf0)
 plt.title('array of f0')

def bitratio_debug(): #graph of bit ratio
 plt.plot(t, bitratioarray)
 plt.title('bitratioarray')

def bitmsg_debug(): #graph of the message in bit form
 plt.figure(1)
 plt.subplot(211)
 plt.plot(bitmsg,'o-')
 plt.title('bit_message')
 plt.subplot(212)
 plt.plot(original_bitmsg, 'o-')
 plt.title('original bit message')

def stream_debug(): #graph of the bitstream
 plt.plot(t, stream,'o-')
 plt.title('stream')

def biterr_debug():
 plt.plot(point_axis, biterrorarr,'o-')
 plt.gca().invert_xaxis()
 plt.title("bit error rate for different rms ratios of white noise")

 20

def bitsim_debug():
 plt.plot(point_axis,bitsimarr,'o-')
 plt.gca().invert_xaxis()
 plt.title("bit similarity rate for different rms ratios of white noise")

def stream_debug(): #graph of the bitstream
 plt.plot(stream,'o-')
 plt.title('stream')
 plt.show()

Code for Modular Functions
import scipy
import scipy.signal
from difflib import SequenceMatcher
import matplotlib.pyplot as plt
import random
import subprocess

#Functions
def rms(wave):
 return scipy.sqrt(scipy.mean(wave**2))

def fourier(signal, f, sr, windowlength, pos_increment):
 omega = 2 * scipy.pi * f
 expfactor = scipy.exp(-1j*omega*scipy.arange(windowlength)/sr)
 window = 0.5*(1+scipy.cos(scipy.linspace(-scipy.pi, scipy.pi, windowlength,
endpoint=False)))
 fftfactor = expfactor * window

 position = 0
 ft = []
 while len(signal) >= position+windowlength:
 fourieramplitude = sum(signal[position:position+windowlength] * fftfactor)
 ft.append(fourieramplitude)
 position += pos_increment
 ft = scipy.array(ft)
 return ft

def create_stream(arrf0, arrf1, f0, f1, threshold, hysteresis):
 bitratioarray = scipy.zeros(0)
 state = 1
 stream = scipy.zeros(0)
 for x in range (arrf0.size): #for each time t
 bit_ratio = arrf1[x]/(arrf1[x]+ arrf0[x])
 bitratioarray = scipy.append(bitratioarray, bit_ratio)
 if arrf1[x]< threshold and arrf0[x] < threshold: #ignore if noise

 21

 stream = scipy.append(stream, 1)
 #print('1')
 continue
 elif state ==1:
 state = (bit_ratio > (0.5 - hysteresis)) #hysteresis
 stream = (scipy.append(stream, state))
 #print(state)
 elif state ==0:
 state = (bit_ratio > (0.5 + hysteresis)) #hysteresis
 stream = (scipy.append(stream, state))
 #print(state)
 return stream, bitratioarray

def get_bitmsg(stream, baud, start_sequence, dt, msglen,biterr_threshold, pop_width, pop_step):
 bit_time = 1/baud
 search_container = []
 message_container = []
 message_started = False
 i = 0
 while(True):
 start = int(i/dt +0.5)
 end = int ((i+bit_time)/dt +0.5)
 bit_length = end - start #elements per message bits
 if (end >= len(stream)):
 print ("FAILED to identify start sequence")
 return 2

 #Pop_Vote
 start+= int((100-pop_width)*bit_length/200 +0.5) #adjusting for
pop_width
 end -= int((100-pop_width)*bit_length/200 +0.5)
 average =0
 samples = 0
 for index in range(start, end, pop_step):
 average += stream[index]
 samples += 1
 average /= samples

 if (not message_started):
 if average >0.5:
 search_container.append(1)
 else:
 search_container.append(0)
 else:
 if average >0.5:
 message_container.append(1)

 22

 else:
 message_container.append(0)

 if ((not message_started) and len(search_container) >= len(start_sequence)):
 if bit_error_rate(search_container[len(search_container) - len(start_sequence):],
start_sequence)<=biterr_threshold:
 print("Start Sequence Bit Error Rate: ",
scipy.round_(bit_error_rate(search_container[len(search_container) - len(start_sequence):],
start_sequence), 1))
 message_started = True
 i+= bit_time #BS fix to move everything by 1 bit
 if len(message_container) == msglen:
 return message_container
 i += bit_time

def bit_error_rate(original_bitmsg, bitmsg):
 error = 0
 original_bitmsg_length = len(original_bitmsg)
 bitmsg_length = len(bitmsg)

 if original_bitmsg_length > bitmsg_length:
 original_bitmsg = original_bitmsg[:bitmsg_length]

 elif original_bitmsg_length < bitmsg_length:
 bitmsg = bitmsg[:original_bitmsg_length]

 error = scipy.mean(abs(scipy.subtract(original_bitmsg,bitmsg))) #take absolute
value of the difference between original message and decoded message, the average will give bit
error rate

 return (error*100)

def string_similarity(original_message, message): #input of 2 list
 original_message = ''.join(str(int(e)) for e in original_message)
 message = ''.join(str(int(e)) for e in message)
 similarity = SequenceMatcher(None, original_message, message)
 stringsim = (similarity.ratio()*100)
 return stringsim

def mp3_encode():
 subprocess.call(["ffmpeg", "-y", "-i", "sample.wav","compressed.mp3"], shell=True)
 #ffmpeg -y -i compressed.mp3 sample.wav
 subprocess.call(["ffmpeg", "-y", "-i", "compressed.mp3","sample.wav"], shell=True)

 23

#ENCODING FUNCTION---
def encode(sr, baud, f1, f0, msglen, startlen, seed_msg):
 #Initialise Variables
 T1 = 1/f1
 T0 = 1/f0
 A = 1
 dt = 1/sr

 bit_time = 1/baud
 t = scipy.arange(0,bit_time,dt)

 #returns a float array for 1 or 0
 def one():
 return 2*scipy.pi*f1*scipy.ones(int(sr/baud))
 def zero():
 return 2*scipy.pi*f0*scipy.ones(int(sr/baud))

 #Initialising original bit message--
--
 original_bitmsg = [] #array for original bit message
 random.seed(seed_msg) #seed for generating random sequence
 for x in range(msglen):
 original_bitmsg += [random.randint(0,1)]

 start = []
 for x in range(1,startlen): #creation of start sequence
 start = start + x*[0]
 start = start + x*[1]

 message = 50*[1] + start +[0]+original_bitmsg +50*[1]

 omega = scipy.zeros(0) #array for phases
 for bit in message:
 if bit:
 omega = scipy.append(omega, one())
 else:
 omega = scipy.append(omega, zero())

 phases = scipy.cumsum(omega)*dt
 wave = A * scipy.sin(phases)

 scipy.io.wavfile.write("sample.wav", sr, wave)
 return wave
#FUNCTIONS FOR
FUN***

 24

def cls():
 print("\n"*70)

def printf():
 scipy.set_printoptions(threshold=scipy.nan)

	We would like to thank our mentor, Dr Hofbauer Wulf for his guidance and support throughout the whole project.

