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Figure 1: Diagram of different encoding methods 
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ABSTRACT 
  This project compares the effects of different parameters and techniques (i.e. the 
parameters of Baud rate, start sequence length, frequency used with MP3 compression and bit 
error threshold.) on the accuracy of acoustic beaconing using binary frequency shift keying. 
These parameters include the baud rate of data transmitted, the length of a start sequence used to 
identify the start of the data as well as the frequency of carrier signals used. Testing with lossy 
compression was also carried out. To accomplish this, we simulated different encoding and 
decoding methods in a Python script, testing the robustness of the process with simulated white 
noise of varying powers, measured using power ratio which is the ratio of the Root-Mean-Square 
of the signal over the Root-Mean-Square of the noise signal. Key results are that MP3 
compression does not significantly affect the waveform such that the frequencies cannot be 
detected, accuracy of decoding increases with decreasing baud rate, the length of the start 
sequence is proportional to the accuracy of the decoding and proportional to packet loss rate. 
 

INTRODUCTION 
Acoustic beaconing refers to the transmission of data through sound. Data (in this case 

binary data) is encoded into a sound wave, which is then transmitted by a speaker, received by a 
microphone, and then decoded again to the get the original data.  

With the widespread use of microphone-equipped devices, there is many potential 
applications of acoustic beaconing for data communication. It can be used for both antagonistic 
and collaborative ways. For example, in a collaborative use scenario, it can be used to selectively 
transmit information to visitors of a museum depending on the exhibit they are looking at. This 
can be done by installing a transmitter at each exhibit to play a sound signal and having a 
microphone receiver on a hand-held device (which the visitor holds), the device will then decode 
the message from the encoded signal and display it on the screen. However, this can also be used 
for nefarious purposes such as secretly taking information from a mobile phone. Information can 
be exploited without a person’s knowledge by transmitting the sound wave at an extremely high 
or low frequency (beyond the range of frequencies audible to humans). This can also be used to 
secretly track the location of people by using an application on a mobile phone or tablet that 
records sound. This could be used in behavioural analysis, allowing shop owners to track how 
often customers visit a specific aisle. It may also provide more evidence for crime scene 
investigations, providing information of the locations of suspects which may act as a crucial 
alibi.  

\There are multiple encoding options available for this, including frequency shift keying, 
phase shift keying and amplitude shift keying.  
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Figure 2: Diagram of packet structure 

Amplitude shift keying is a form of amplitude modulation which represents data as 
variations of amplitude. This makes it easily disrupted by background noise level, causing the 
encoded message to have errors.  

Phase shift keying transmits data by modulating the phase of the reference signal by 
varying the sine and cosine inputs and stipulated points of time. This severely limits the number 
of signals we can use and has a more complicated decoding process. Thus, as both amplitude 
shift keying and phase shift keying have many drawbacks and are not as suited for 
implementation in our research project, leading us to select frequency shift keying as our 
encoding method.  

Frequency shift keying is a form of frequency modulation. It works by representing 
different symbols with different frequencies in a carrier signal. The carrier signal can then be 
sampled for its frequency at different times to obtain the original message sent. The benefits of 
frequency shift keying are that it can be adapted for a wide variety of scenarios, such as changing 
the frequencies so that they do not clash with other noises of the same frequency, as well as 
being able to have multiple frequencies for expansion purposes (E.G. Quadrature Frequency shift 
keying, which uses 4 frequencies).  

 
MATERIALS AND METHOD 

Software required 
• Python 3.6+ 
• Python libraries: SciPy, matplotlib 
• Audio converter: FFmpeg 
• Python script (attached to appendix) 

 
Overview of flow of python script code 

For each set of parameters / optimisations (i.e. baud rate, frequency, bit error threshold 
and start sequence length) we choose to use for encoding and decoding, our code sends 50 
packets of data. These parameters included the baud rate, signal carrier frequencies, sampling 
rate, etc.  Each packet consists of a start sequence, meant to identify the starting point of the 
packet, as well as a message, encoded in bits. A packet is considered “received” when our 
program is able to identify the start sequence associated with the packet. The bit error rate of the 
trial is determined by the arithmetic mean of the bit error rates of packets which are received, 
achieved via bitwise comparison of the original bit message and the decoded bit message. 

This would allow for easy comparison of the effects of the optimisations.  
 

Generating binary data 
The data sent and transmitted was a 30-bit long binary bit message, which was generated 

using a seeded pseudorandom number generator in from a python library. Across various packets 
set within each bit level, the bit message was varied by changing the random seed, ensuring that 
the results could be accurately replicated with different bit messages. However, across different 
trials such as different noise power levels, the original seed remains to ensure fair and accurate 
testing.  
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Figure 4: Diagram of our original signal 

Figure 3: Graph of an example of the start sequence 

01001100011100001111 

 
To be able to identify the start of each packet, a start sequence is used. The start sequence 

is a binary message of adjustable length in a difficult to replicate pattern, which is added on to 
the start of the bit message to allow for the recognition of the bit message in a soundwave.  

 
The start sequence consists of a specific 
pattern of 0 and 1 bits. Starting with a 1 bit, 
an increasing number of 0 or 1 bits are added 
subsequently for an increasing segment of 
the code. E.g. 10, to 101100, to 
101100111000. This particular pattern was 
used as it is non-translatable, with increasing 
effectiveness with increasing length, thus 
distinguishing it from the bit message by 
reducing the probability of it clashing with                                               
the randomly generated bit message. 

The sending of multiple packets 
instead of an individual long string of bits, 
increase robustness in asynchronous 
communication. We test for packet loss, in 
terms of the percentage of start sequences 
identified (as being a start sequence) out of 
the total number of packets sent. 

 
Encoding data 

As our code uses multiple carrier frequencies, we used orthogonal frequency digital 
multiplexing (OFDM). Using this method, the frequencies for the carriers are selected such that 
they are orthogonal to one another, means that there is no intersymbol interference (ISI) between 
the 2 different frequencies used. As such, this allows us to perform the fourier transform 
accurately without the use of an apodization window as each frequency does not contribute to the 
amplitude when measuring the other frequency. To achieve orthogonality, the difference in 
frequencies has to be an integer multiple of the baud rate. 

 

 

 
Parameters to consider: 

1. Sampling rate (number of samples in signal per second) 
2. Baud rate (the number of symbols per second) 
3. Frequencies used to represent 1 and 0 

 

 

Bit elements 

0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 
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𝜔𝜔(𝑡𝑡) =
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑 

 

 

For all out testing, we used the same sampling rate of 44100 Hz. Although this is 
computationally intensive and would increase the time needed to run the code, it allowed us to 
get a large number of samples per second, increasing the accuracy of our experimentation. By 
the Nyquist-Shannon sampling theorem, the sampling rate must be greater than twice the 
maximum frequency of the signal to have enough information to deduce the amplitude and 
frequency of the wave, thus, choosing this particular sampling rate also allows for our 
frequencies to range up to 20000 Hz, allowing us wider range of frequencies to experiment with.  

To encode the data as a sound wave, we combined carrier sine waves of 2 different 
frequencies (one for each symbol), each with the time of baud rate seconds, while keeping the 
phase of the wave continuous. 
 

𝜙𝜙(𝑡𝑡) =  � 𝜔𝜔(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑥𝑥

0
=  � 𝜔𝜔(𝑡𝑡) 𝑑𝑑𝑑𝑑

𝑇𝑇×𝑠𝑠𝑠𝑠

𝑡𝑡=0

 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 , 
𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 

𝜔𝜔 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 

Since the angular frequency of the wave is the rate of change of the phase of the wave, the 
definite integral from 0 to the time in question of the angular frequency of the wave would evaluate 
to the phase of the wave. For our research purposes, we used discrete data with the angular frequency 
of the waveform being a step function.  

Thus, a Riemann sum of the angular frequency of the wave would result in an exact phase. 
This results in a soundwave with different frequencies which code for different symbols (1 and 0) in 
a continuous phase. The waveform is exported as a .wav file using SciPy, this file format is 
uncompressed and lossless and thus maintains complete accuracy of the data. 

To test the effect of lossy audio compression, we converted the generated wav file into an 
mp3 format (lossy compression) and back into a wav format using FFmpeg, at a bit rate of 64 kbps 
(default). When converting the .wav file to a .mp3 file, the original signal file is compressed, the 
accuracy of specific components of sound which are not within hearing capabilities of most people 
are reduced through approximation. Furthermore, frequencies masked by stronger tones will also be 
removed, following the psychoacoustic model. This will cause some amount of data to be lost.  

White noise is generated using a seeded pseudorandom number generator which generates 
white noise according to a normal distribution. This noise has a mean of 0 and a standard deviation of 
1. The noise wave is then multiplied by an exponential factor for the different powers of white noise 
and added to the wave. The resultant soundwave is then normalized to a sound wave to have a root-
mean-square value equal to the original wave. 
 
Decoding data 

The data received comes in the form of a .wav soundwave, which is read through a python 
library function into an array of amplitude of the wave against time. The wave is then repeatedly 
processed using the Fourier transform1 to obtain the amplitude of 𝒇𝒇𝟏𝟏 and 𝒇𝒇𝟎𝟎 of that interval of the 
wave, resulting in streams of values of 𝒇𝒇𝟎𝟎 and 𝒇𝒇𝟏𝟏, as shown in Figures 5 and 6.  
                                                

1 A Fourier transform decomposes a signal into the frequencies that it consists of, and it 
represents the amplitude of that frequency present in the original function. Thus, using Fourier 
transforms can allow us to calculate the proportions of different frequencies in the signal and deduce 
the bit present at a specific time. 
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Figure 7: Visual representation of how our results are 
compared 

Figure 5: Graph of array of f0 Figure 6: Graph of array of f1 

Figure 8: Graph of bitstream 

𝐺𝐺(𝑓𝑓) =  � 𝑔𝑔(𝑡𝑡)  × 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  𝑑𝑑𝑑𝑑
𝑣𝑣

𝑢𝑢
=  �𝑔𝑔(𝑡𝑡)  × 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  𝑑𝑑𝑑𝑑

𝑣𝑣

𝑡𝑡=𝑢𝑢

 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 [𝑢𝑢, 𝑣𝑣] 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝑔𝑔(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 

𝑓𝑓 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

 
 
 
These results are compared, with the 
optional optimization of a hysteresis 
which we will not explore in this project. 
This results in a “stream” of bits collected 
through the repeated sampling (which we 
call the bitstream). 

 
The bitstream is then analysed by 

sampling at fixed intervals with a sliding 
window to check for the start sequence. 
A popularity voting mechanism is 
implemented here. 

This works by calculating the 
arithmetic mean of the bit stream bits 
across the time for a bit message bit. If 
the mean is greater than 0.5, it would 
mean that majority of the stream bits 
vote that the message bit codes for a 1, 
thus the program treats that sequence as a 
1 in the decoded bit message, and vice 
versa for a mean less than 0.5. 

We did not require the detected start sequence to exactly match the generated start 
sequence, but rather has a variable bit error threshold of 20% which allows room for error in the 
detection of the start sequence. This is such that only 80% of the start sequence has to match, 

  

Bit elements 
Bit elements 
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Baud rate Baud rate 

Figure 9: Graph of bit error rate against power ratio 
for different values of baud rate  

Figure 10: Graph of packet loss against power ratio 
for different values of baud rate  
 

increasing the margin of error and allowing a few bits to be lost when decoding, without 
preventing the start sequence from being detected.  

Once the start sequence is identified, repeated sampling continues for the next message 
length of message bits. 
 
Calculating and displaying results 

For each packet received where the start sequence is identified, the accuracy of the 
decoded bit message is determined through the bit error rate, from a bit error function. The 
derived bit message is compared bitwise with the original bit message, and is terminated at the 
end of the message, and expresses the bit error rate as the percentage of wrong bits over the total 
bits. 

A graph is then plotted of the average bit error rate across all the packets for each power 
level against the logarithmic scale of loud noise in decibels.  
 

Flowchart of program for each packet tested 
 

For each packet sent

Encode to mp3 
and convert back 
to wav (if needed)

baud, k, seed, 
msglen, 
startlen, 

sampling rate

Decoding 
sound file

Repeated 
Discrete Fourier 
transforms on 

wave 

Generate start 
sequence

Generate 
message

Sound file 
generated

White 
noise 

generated

Seed, noise 
power

Array of 
amplitudes 

of f0

Array of 
amplitudes 

of f1

Bit wise Comparison to 
generate bit stream 

(digitalisation)

Stream of 
bits to 

represent 
message

Converting 
bit stream 

to bit 
message

Encode 
sound wave

Popularity voting to 
determine average (bit 
message) bit value over 

multiple stream bits

Sliding window 
algorithm to 
locate start 
sequence

Start sequence 
identified?

Start sequence 
bit error 

threshold

If not, packet lost

Else continue and 
generate bit 

message

Compare 
generated bit 
message to 
original bit 
message

Continue to next packet / power 
level / independent variable

Signal encoding Creation of bit stream (digitalisation) Decoding bit message (digital manipulation)

RESULTS & DISCUSSION 
  
Baud results (Fig 9, Fig 10) 
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Figure 11: Graph of bit error rate against power 
ratio for different values of start sequence length 

 
In terms of the value of Baud rate, data shows (Fig 9, Fig 10) that a lower value would 

result in more accurate decoding as the popularity vote used in the decoding could help with 
ensuring that most of the message would be decoded accurately. Furthermore, a lower baud rate 
greatly helps to ensure that the start sequence is decoded correctly. This is especially true is a 
high bit error threshold (greater than 5) is used since wrongly decoded start sequences can easily 
be considered as being correct, hence robust decoding of the start sequence is required.  

However, a lower baud rate would also result in a longer time required to send the 
message and would make decoding the message more computationally intensive due to the 
increased number of operations (particularly fourier transforms) needed. Furthermore, in the case 
of intermittent pulses of interference, a low baud rate results in lesser accuracy whereas a signal 
of high baud rate could be used to transfer data in the time between the pulses. Thus, when 
choosing a value of baud, one would have to consider the practical usage of their code and find a 
middle ground between speed and computational complexity and accuracy of results as well as 
considering any special types or patterns of interference. 
 
Start sequence length results (Fig11, Fig 12) 
 

 
In terms of the start sequence length, a longer start sequence length results in more accurate 

decoding, as the longer start sequence is more unique and harder to be replicated in other parts of the 
bit message, and the exact start location is more accurate, thus the information detected is more of the 
information of the bit message, and less of random bits created by the white noise interference. 
However, this may be required in the case where the data received in a packet must be very accurate. 

However, it can be seen that the higher start sequence length also results in greater packet 
loss rates. This is expected and can be explained through how since the start sequence is longer, there 
is a greater probability of having a wrong bit, which leads to a greater probability of not fulfilling the 
bit error threshold and thus not recognising the start sequence. 

Thus, various start sequence lengths would be ideal for different situations. Longer start 
sequences could be ideal in scenarios where the accuracy of the information received is of utmost 
importance, and that packet loss can be neglected in favour of more accurate information. Shorter 
start sequences would thus be ideal for cases where packet loss has to be kept to a minimum, and the 
accuracy of the data is not strictly necessary. Thus, to choose an optimal value of baud, the accuracy 
against the packet loss of the data must be considered per the specific needs of the acoustic beacon. 
 
 

Figure 12: Graph of packet loss against power ratio 
for different values of start sequence length 
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Figure 14: Graph of packet loss against power ratio for 
different values of frequencies (ranging from 136-5044) 
 

Figure 17: Graph of bit error rate against power ratio 
for different values of frequencies (ranging from 136-
5044) with MP3 compression 
 

Figure 18: Graph of packet loss against power ratio 
for different values of frequencies (ranging from 136-
5044) with MP3 compression 
 

Figure 13: Graph of bit error rate against power ratio 
for different values of frequencies (ranging from 136-
5044) 
 

MP3 compression with Frequency results (Fig13, 14, 17, 18) 
 

 
The hypothesis was that frequencies masked by stronger tones will also be removed, 

following the psychoacoustic model, where tones at frequencies outside of the audible range of 
humans are removed to save space.  

This would cause some amount of data to be lost, especially for extremely high and low 
frequencies, removing the data encoded in these high frequencies. However, this data lost is not 
significant, as seen in the similarities between Fig 17 and 18 with Fig 13 and 14 respectively, 
where MP3 compression only results in a slightly steeper curve which ends at a bit error rate of 
35%, as compared with the normal 30% without MP3 compression.  

Thus, MP3 compression does not affect much of the frequency and clarity of the signal, 
such that even when passed through MP3 encoding, the waveform is able to retain enough of the 
original shape such that data can still be accurately decoded. 
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Figure 18: Graph of bit error rate against bit 
error threshold for start sequence detection 
(ranging from 0 to 40%) 
 

Figure 19: Graph of packet loss against bit error 
threshold for start sequence detection (ranging from 0 
to 40%) 
 

 
Bit error threshold results (Fig 18 and Fig 19) 

 

 
 In terms of bit error rate, a lower bit error threshold would provide lower bit error rates 
with greater accuracy. This is due to the fact that for lower bit error threshold rates, the start 
sequence is detected with greater accuracy as there is less room for error in detecting the start 
sequence, thus it is more unlikely for the resultant bit stream to be translated left or right, or 
being detected at a wrong location. 
 In terms of packet loss rates, a greater bit error threshold would result in greater packet 
loss rates. This is because greater bit error thresholds allow for more error in the detection of the 
start sequence, such that even if a few bits are off it can be written off. Especially for the results 
of bit error threshold of 30 and 40, as 30 and 40 are close to the random bit error rates, it has a 
great chance of detecting nearly anything as a start sequence. 
 In choosing a value of bit error threshold, one has to find balance between the bit error 
rates and packet loss, as lower bit error threshold results in greater accuracy in message 
decoding, but a lower chance of receiving the packet 
  
Conclusion 
 The results of the project have been in-line with current scientific knowledge, and possess 
many applications, particularly in the creation of start sequences and choosing baud rates, as in 
various scenarios those can be varied to different effects (E.G. having a low value of baud to 
ensure accuracy of data when time is not an issue). Possible follow-up actions could be to further 
examine the results of more extensive MP3 compressions, as well as detection of sound in real 
world scenarios (E.G. detection of handphones). 
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ANNEX 
Table 1: List of variables in our code 

Variable Symbol Default value Sampled range 

Standard Variables 

Sampling rate sr 44100  

Baud rate 
 (signals per second) 

baud 45.45 20-400 

Frequencies of logic 1 
and logic 0 

𝒇𝒇𝟎𝟎 
𝒇𝒇𝟏𝟏 

baud*3 
baud*4 

 

Difference in 
frequencies bin 

df baud 3-111 

Bit message length msglen 30 - 

Bit message random 
seed 

original_seed_message 10 - 

Length of start sequence 
increment 

start_len 20  20 – 56 
 
 
 

Noise Variables 

Minimum Noise power noise_power_start 10^1.2 - 

Maximum Noise power noise_power_end 10^2.0 - 

Total Noise samples total_samples 30 - 

Digitisation Variables 

http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10422
http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10422.http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10478
http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10422.http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10478
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Fourier transform 
window length 

ftlength 1000 - 

Squelch minimum noise 
threshold 

threshold 0 (not in use) - 

Hysteresis center hysteresis 0 (not in use) - 

Bit error threshold for 
detecting start sequence 

biterr_threshold 20% 0% to 40% 

 
 
Main code 
import scipy 
import scipy.signal 
import scipy.io.wavfile 
import random 
import time 
import matplotlib.pyplot as plt 
import csv 
import matplotlib 
matplotlib.rcParams.update({'font.size': 22}) 
 
func = __import__("Decoding FSK 7 mp3 Functions")                         #import functions as func. 
 
 
def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█'): 
    """ 
    Call in a loop to create terminal progress bar 
    @params: 
        iteration   - Required  : current iteration (Int) 
        total       - Required  : total iterations (Int) 
        prefix      - Optional  : prefix string (Str) 
        suffix      - Optional  : suffix string (Str) 
        decimals    - Optional  : positive number of decimals in percent complete (Int) 
        length      - Optional  : character length of bar (Int) 
        fill        - Optional  : bar fill character (Str) 
    """ 
    percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) 
    filledLength = int(length * iteration // total) 
    bar = fill * filledLength + '-' * (length - filledLength) 
    print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = '\r') 
    # Print New Line on Complete 
    if iteration == total:  
        print() 
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resuming = True   
mp3 = True  
#basic variables 
sr = 44100 
baud = 45.45                                                            #symbols per second 
OFDM_multiplier = 3 
f0 = baud*OFDM_multiplier                                              #Frequency of 0 bit 
f1 = baud*(OFDM_multiplier+1)                                            #Frequency of 1 bit 
msglen = 30                                                              #number of bits in message to receive\ 
original_seed_msg = 10 
start_len  =4 
#Experiment config variables 
noise_power_start = 1.2                                                 #10**noise_power is the power of white 
noised used 
noise_power_end = 2.0                                                   #0.5 to 0.9 
total_samples = 30                                                      #total number of samples to do 
 
#Digitalisation Variables 
ftlength = 1000                                                         #samples in signal per ft 
threshold = 0                                                           #for squelch --> lower == quieter signals can 
go through  
hysteresis = 0                                                          #(0, 0.5) larger --> greater difference from 0.5 
(for bit_ratio) needed for hysteresis 
 
#Stream to bitmsg variables 
biterr_threshold = 20                                                   #percentage similarity to start sequence 
needed to count as identified 
pop_width = 100                                                         #pop_vote over the center pop_width 
percent of stream bits for every message bit 
pop_step = 1                                                            #pop_vote sum --> for index in range (start, 
end, step) 
 
#Selecting independant variable for analysis 
var_name = "frequency" 
lowest_iv =  3                                                          #lowest value for iv 
highest_iv = 111                                                          #highest value for iv 
total_iv = 5                                                            #total number of ivs (between lowest and 
highest) to test 
setiv = scipy.linspace(lowest_iv, highest_iv, total_iv)                 #set of iv values to test 
total_packet = 50 
 
 
#Initial variables 
iv_counter = 0 
spectrogram_biterr = [] 
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spectrogram_bitsim = [] 
spectrogram_packet_received = [] 
points = scipy.linspace(noise_power_start,noise_power_end,total_samples) 
point_axis = scipy.zeros(0) 
rms = 0 
original_signal = [] 
total_increment = total_samples*total_iv*total_packet 
current_increment = 0 
 
#Main program 
time_start = time.time()                                                #Start time variable 
print("------------------------------------------------") 
print("Independant Variable being tested:", var_name) 
print(lowest_iv, "<", var_name, "<", highest_iv) 
print("------------------------------------------------\n") 
 
def resume(): 
    with open('IV file saver.csv') as csvfile: 
            csv_reader = csv.reader(csvfile, delimiter='|') 
            counter = 0 
            for row in csv_reader: 
                if counter == 0: 
                    finished_ivs = int(''.join(row))#how many ivs done 
                elif counter==1: 
                    spectrogram_biterr = eval(row[0]) 
                elif counter==2: 
                    spectrogram_bitsim = eval(row[0]) 
                elif counter==3: 
                    spectrogram_packet_received = eval(row[0]) 
                counter+=1 
            print ("RESUMINGGG") 
            if finished_ivs != total_iv: 
                print("resuming from", finished_ivs+1) 
            else: 
                print ("ready to display results") 
 
            return finished_ivs,spectrogram_biterr,spectrogram_bitsim,spectrogram_packet_received 
         
if (resuming): 
    finished_ivs,spectrogram_biterr,spectrogram_bitsim,spectrogram_packet_received = resume() 
for iv in setiv: 
    '''PLEASE SET THE INDEPENDANT VARIABLE HERE''' 
 
    f0 = baud*iv                                              #Frequency of 0 bit 
    f1 = baud*(iv+1)   
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    iv_counter+= 1 
    if resuming: 
        if finished_ivs == total_iv: 
            break 
        elif (iv_counter<= finished_ivs): 
            current_increment += total_packet*total_samples 
            continue 
     
    #resetting variables 
    biterr_arr = [] 
    bitsim_arr = [] 
    packet_received_arr = [] 
    counter = 0 
    for x in points: 
        seed_msg = original_seed_msg 
        counter += 1 
        packet_received = 0 #number of packets received for this point 
        biterr_sum = 0 
        bitsim_sum = 0 
        print("Power:", str(counter)+'/'+str(total_samples)) 
        print ("Independant Variable Value:", iv) 
        print("Independant Variable Val", iv_counter, "/", total_iv) 
        for packet_no in range(total_packet): 
            print ("packet:", packet_no+1) 
            seed_msg += 1  
            #Creation of sound file 
            original_signal = func.encode(sr, baud, f1, f0, msglen, start_len, seed_msg) 
            #Creation of start codon 
            start  = [] 
            for q in range(1,start_len): 
                start = start + q*[0] 
                start = start + q*[1] 
                 
            #MP3 and Importing file 
                 
            if mp3: 
                func.mp3_encode() 
                sr, original_signal = scipy.io.wavfile.read("sample.wav") 
                original_signal = original_signal.astype(scipy.float64) 
                original_signal = scipy.asarray([x/32767 for x in original_signal]) 
             
 
            dt = 1/sr 
 
            original_signal_rms = (func.rms(original_signal))**2                    #getting the average 
power of the original signal 
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            rms = original_signal_rms 
            signal = scipy.zeros(len(original_signal))  
 
            #white noise generator 
            scipy.random.seed(seed_msg) 
 
            noise_signal = scipy.random.normal(0,1,size = (sr*20)) 
            noise_power_amplifier = 10**x 
            for i in range (len(original_signal)): 
                signal[i] = (noise_power_amplifier**0.5) *noise_signal[i] + original_signal[i] 
 
            #Creating original_bitmsg 
            original_bitmsg = scipy.zeros(0)                                        #array for original bit message 
            random.seed(seed_msg)                                                         #seed for generating random 
sequence 
            for i in range(msglen): 
                original_bitmsg = scipy.append(original_bitmsg,random.randint(0,1)) 
         
            #Calculations 
            power_ratio = original_signal_rms/(func.rms(signal)**2)                 #power ratio 
decreases with noisier signal 
            amplitude_ratio = power_ratio**0.5                                  #power proportional to 
amplitude squared 
            signal = signal*amplitude_ratio 
             
            #Analysis of signal--------------------- 
            #print('fourier start') 
            arrf0 = abs(func.fourier(signal,f0,sr,ftlength,25)) 
            arrf1 = abs(func.fourier(signal,f1,sr,ftlength,25)) 
            print('fourier') 
             
            #Cleaning Stream------------------------ 
            stream, bitratioarray = func.create_stream(arrf0, arrf1, f0, f1, threshold, hysteresis) 
            #tream = func.streamclean(stream,cleanwindow) 
            t = scipy.linspace((ftlength/ (2*sr)), (signal.size/sr ), len(stream)) 
 
            #Getting Bitmsg From Stream------------- 
            stream_dt = dt*len(signal)/len(stream) 
            bitmsg = func.get_bitmsg(stream, baud, start, stream_dt, msglen, biterr_threshold, 
pop_width, pop_step) 
            if bitmsg != 2: 
                #Accuracy Analysis---------------------- 
                biterr_rate = func.bit_error_rate(original_bitmsg,bitmsg) 
                bit_similarity = func.string_similarity(bitmsg,original_bitmsg) 
                #Recording of results------------------- 
                biterr_sum += biterr_rate 
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                bitsim_sum += bit_similarity 
                packet_received += 1 
 
                #print (str(bit_similarity)+ '% bit similarity')    
                print (str(scipy.round_(biterr_rate, 1))+"% bit error rate") 
            else: 
                print ("Packet lost") 
            #printProgressBar(current_increment, total_increment, prefix = 'Progress:', suffix = 
'Complete', length = 50) 
            current_increment+= 1             
            
            #Showing results------------------------ 
  
            print('\n') 
        if (packet_received > 0): 
            biterr_arr.append(biterr_sum/packet_received) 
            bitsim_arr.append(bitsim_sum/packet_received) 
        else: 
            biterr_arr.append(100) 
            bitsim_arr.append(0) 
        packet_received_arr.append(100*packet_received/total_packet) 
        print("POINT DONE\n") 
        #TIME ESTIMATE 
        time_end = time.time() 
        #print("-----------------TIME TAKEN:", int((time_end-time_start)/60), "minutes and ", 
int((time_end-time_start))%60, "Seconds") 
        time_taken = time_end - time_start 
        time_per_point = time_taken / ((iv_counter-1)*total_iv + counter) 
        time_remaining = time_per_point*(total_iv - iv_counter)*(total_samples) + (total_samples - 
counter)*time_per_point 
        time_remaining = "TIME REMAINING: " + str(int((time_remaining)/60))+ " minutes and 
"+ str(int(time_remaining)%60)+ " Seconds" 
        printProgressBar(current_increment, total_increment, prefix = '', suffix = time_remaining, 
length = 50) 
        print ("\n") 
 
         
         
    spectrogram_biterr.append(biterr_arr) 
    spectrogram_bitsim.append(bitsim_arr) 
    spectrogram_packet_received.append(packet_received_arr) 
    with open('IV file saver.csv', 'w', newline='') as csvfile: 
        spamwriter = csv.writer(csvfile, delimiter='|', quotechar=' ', 
quoting=csv.QUOTE_MINIMAL) 
        spamwriter.writerow([iv_counter]) 
        spamwriter.writerow([spectrogram_biterr]) 
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        spamwriter.writerow([spectrogram_bitsim]) 
        spamwriter.writerow([spectrogram_packet_received]) 
    print ("Independant variable value finished") 
    print ("----------------------------------------------------------------------------------") 
 
time_end = time.time() 
print("TIME TAKEN:", int((time_end-time_start)/60), "minutes and ", int((time_end-
time_start))%60, "Seconds") 
 
#Colour Mesh (WIP) 
def show_mesh_biterr(): 
    plt.pcolormesh(noise_power_amplifier_axis, setiv, spectrogram_biterr) 
    plt.title("Spectrogram of bit error against noise amplifier for different IVs") 
def show_mesh_bitsim(): 
    plt.pcolormesh(noise_power_amplifier_axis, setiv, spectrogram_bitsim) 
    plt.title("Spectrogram of bit similarity against noise amplifier for different IVs") 
 
#Multiple Line Graph (for displaying results) 
original_signal = func.encode(sr, baud, f1, f0, msglen, start_len, original_seed_msg) 
rms = func.rms(original_signal) 
scipy.random.seed(original_seed_msg) 
noise_signal = scipy.random.normal(0,1,size = (sr*20)) 
noise_signal = noise_signal[:len(original_signal)] 
power_axis = [10*scipy.log10((10**x)*func.rms(noise_signal)**2/(rms**2)) for x in points] 
 
def show_biterr(): 
    plt.cla() 
    for ivcounter in range(total_iv): 
        plt.plot(power_axis,spectrogram_biterr[ivcounter], label = str(setiv[ivcounter]), alpha = 0.6) 
    legend = plt.legend(loc='center left', fontsize='large') 
    plt.title("Graph of bit error against power ratio (dB) for different values of "+ var_name + " 
with MP3 compression",  fontsize=20) 
    plt.xlabel("power ratio (dB)", fontsize=20) 
    plt.ylabel("Bit Error", fontsize=20) 
    plt.show() 
def show_bitsim(): 
    plt.cla() 
    for iv_counter in range(total_iv): 
        plt.plot(power_axis,spectrogram_bitsim[iv_counter], label = str(setiv[iv_counter]), alpha = 
0.6) 
    legend = plt.legend(loc='center left', fontsize='large') 
    plt.title("Graph of bit similarity against power ratio (dB) for different values of " + var_name , 
fontsize=20) 
    plt.xlabel("power ratio (dB)", fontsize=20) 
    plt.ylabel("Bit Similarity", fontsize=20) 
    plt.show() 
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def show_packet(): 
    plt.cla() 
    for iv_counter in range(total_iv): 
        plt.plot(power_axis,spectrogram_packet_received[iv_counter], label = 
str(setiv[iv_counter]), alpha = 0.6) 
    legend = plt.legend(loc='center left', fontsize='large') 
    plt.title("Graph of packet loss against power ratio (dB) for different values of " + var_name + " 
with MP3 compression", fontsize=20) 
    plt.xlabel("power ratio (dB)", fontsize=20) 
    plt.ylabel("Percentage of packets received" , fontsize=20) 
    plt.show() 
 
 
#debugging********************************************************************
******************************************************************************
****************************************************** 
def debug(): #list of debugging tools 
    print ('debugging tools:' + '\n' + 'signal' + '\n' + 'f01' + '\n' + 'bitratio'+ '\n' + 'stream'+ '\n' + 
'bitmsg'+'\n' + 'biterr'+'\n' + 'bitsim'+'\n' + 'multiplot (beta)')                     
    command = input() 
    command = str(command) 
    if command == 'signal': signal_debug() 
    elif command == 'f01': f01_debug() 
    elif command == 'bitratio': bitratio_debug() 
    elif command == 'bitmsg': bitmsg_debug() 
    elif command == 'stream': stream_debug() 
    elif command == 'biterr': biterr_debug() 
    elif command == 'bitsim': bitsim_debug() 
    elif command == 'multiplot': 
        print ('available tools for multiplot:' +'\n'+ 'bitratio'+ '\n' + 'stream'+ '\n' + 'bitmsg'+'\n' + 
'biterr'+'\n' + 'bitsim')                     
        plt.figure(1) 
        plt.subplot(211) 
        command = input() 
        command = str(command) 
        if command == 'bitratio': bitratio_debug() 
        elif command == 'bitmsg': bitmsg_debug() 
        elif command == 'stream': stream_debug() 
        elif command == 'biterr': biterr_debug() 
        elif command == 'bitsim': bitsim_debug() 
        plt.subplot(212) 
        command = input() 
        command = str(command) 
        if command == 'f01':f01_debug() 
        elif command == 'bitratio': bitratio_debug() 
        elif command == 'bitmsg': bitmsg_debug() 
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        elif command == 'stream': stream_debug() 
        elif command == 'biterr': biterr_debug() 
        elif command == 'bitsim': bitsim_debug() 
         
    plt.show() 
 
def signal_debug():                                                     #graph of soundwave 
    plt.figure(1) 
    plt.subplot(211) 
    plt.plot(original_signal) 
    plt.title('original signal') 
    plt.subplot(212) 
    plt.plot(signal) 
    plt.title('read from wav signal') 
 
def f01_debug():                                                        #graph of frequency 1 and frequency 0 
    plt.figure(1) 
    plt.subplot(211) 
    plt.plot(t, arrf1) 
    plt.title('array of f1') 
    plt.subplot(212) 
    plt.plot(t, arrf0) 
    plt.title('array of f0') 
 
def bitratio_debug():                                                   #graph of bit ratio 
    plt.plot(t, bitratioarray) 
    plt.title('bitratioarray') 
 
def bitmsg_debug():                                                     #graph of the message in bit form 
    plt.figure(1) 
    plt.subplot(211) 
    plt.plot(bitmsg,'o-') 
    plt.title('bit_message') 
    plt.subplot(212) 
    plt.plot(original_bitmsg, 'o-') 
    plt.title('original bit message') 
 
def stream_debug():                                                     #graph of the bitstream 
    plt.plot(t, stream,'o-') 
    plt.title('stream') 
 
def biterr_debug(): 
    plt.plot(point_axis, biterrorarr,'o-') 
    plt.gca().invert_xaxis() 
    plt.title("bit error rate for different rms ratios of white noise") 
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def bitsim_debug(): 
    plt.plot(point_axis,bitsimarr,'o-') 
    plt.gca().invert_xaxis() 
    plt.title("bit similarity rate for different rms ratios of white noise") 
 
def stream_debug():                                                     #graph of the bitstream 
    plt.plot(stream,'o-') 
    plt.title('stream') 
    plt.show() 
 
Code for Modular Functions 
import scipy 
import scipy.signal 
from difflib import SequenceMatcher 
import matplotlib.pyplot as plt 
import random 
import subprocess 
 
#Functions 
def rms(wave): 
    return scipy.sqrt(scipy.mean(wave**2)) 
 
def fourier(signal, f, sr, windowlength, pos_increment): 
    omega = 2 * scipy.pi * f 
    expfactor = scipy.exp(-1j*omega*scipy.arange(windowlength)/sr) 
    window = 0.5*(1+scipy.cos(scipy.linspace(-scipy.pi, scipy.pi, windowlength, 
endpoint=False))) 
    fftfactor = expfactor * window 
 
    position = 0 
    ft = [] 
    while len(signal) >= position+windowlength: 
        fourieramplitude = sum(signal[position:position+windowlength] * fftfactor) 
        ft.append(fourieramplitude) 
        position += pos_increment 
    ft = scipy.array(ft) 
    return ft 
 
def create_stream(arrf0, arrf1, f0, f1, threshold, hysteresis): 
    bitratioarray = scipy.zeros(0) 
    state = 1 
    stream = scipy.zeros(0) 
    for x in range (arrf0.size):                                                    #for each time t 
        bit_ratio = arrf1[x]/(arrf1[x]+ arrf0[x]) 
        bitratioarray = scipy.append(bitratioarray, bit_ratio) 
        if arrf1[x]< threshold and arrf0[x] < threshold:                            #ignore if noise  
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            stream = scipy.append(stream, 1) 
            #print('1') 
            continue 
        elif state ==1: 
            state = (bit_ratio > (0.5 - hysteresis))                                #hysteresis 
            stream = (scipy.append(stream, state)) 
            #print(state) 
        elif state ==0: 
            state = (bit_ratio > (0.5 + hysteresis))                                #hysteresis 
            stream = (scipy.append(stream, state)) 
            #print(state) 
    return stream, bitratioarray 
              
def get_bitmsg(stream, baud, start_sequence, dt, msglen,biterr_threshold, pop_width, pop_step): 
    bit_time = 1/baud 
    search_container = [] 
    message_container = [] 
    message_started = False 
    i = 0 
    while(True): 
        start = int(i/dt +0.5) 
        end = int ((i+bit_time)/dt +0.5) 
        bit_length = end - start                                                    #elements per message bits 
        if (end >= len(stream)): 
            print ("FAILED to identify start sequence") 
            return 2 
         
        #Pop_Vote 
        start+= int((100-pop_width)*bit_length/200 +0.5)                            #adjusting for 
pop_width 
        end -= int((100-pop_width)*bit_length/200 +0.5) 
        average =0 
        samples = 0 
        for index in range(start, end, pop_step): 
            average += stream[index] 
            samples += 1 
        average /= samples 
         
        if (not message_started): 
            if average >0.5: 
                search_container.append(1) 
            else: 
                search_container.append(0) 
        else: 
            if average >0.5: 
                message_container.append(1) 
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            else: 
                message_container.append(0) 
 
        if ((not message_started) and len(search_container) >= len(start_sequence)): 
            if bit_error_rate(search_container[len(search_container) - len(start_sequence):], 
start_sequence)<=biterr_threshold: 
                print("Start Sequence Bit Error Rate: ", 
scipy.round_(bit_error_rate(search_container[len(search_container) - len(start_sequence):], 
start_sequence), 1)) 
                message_started = True 
                i+= bit_time    #BS fix to move everything by 1 bit 
        if len(message_container) == msglen: 
            return message_container 
        i += bit_time 
         
def bit_error_rate(original_bitmsg, bitmsg): 
    error = 0 
    original_bitmsg_length = len(original_bitmsg) 
    bitmsg_length = len(bitmsg) 
 
    if original_bitmsg_length > bitmsg_length: 
        original_bitmsg = original_bitmsg[:bitmsg_length] 
 
    elif original_bitmsg_length < bitmsg_length: 
        bitmsg = bitmsg[:original_bitmsg_length] 
         
    error = scipy.mean(abs(scipy.subtract(original_bitmsg,bitmsg)))                 #take absolute 
value of the difference between original message and decoded message, the average will give bit 
error rate 
 
    return (error*100) 
 
     
         
def string_similarity(original_message, message):   #input of 2 list 
    original_message = ''.join(str(int(e)) for e in original_message) 
    message = ''.join(str(int(e)) for e in message) 
    similarity = SequenceMatcher(None, original_message, message) 
    stringsim = (similarity.ratio()*100) 
    return stringsim 
 
def mp3_encode(): 
    subprocess.call(["ffmpeg",  "-y", "-i",  "sample.wav","compressed.mp3"], shell=True) 
    #ffmpeg -y -i compressed.mp3 sample.wav 
    subprocess.call(["ffmpeg",  "-y", "-i",  "compressed.mp3","sample.wav"], shell=True) 
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#ENCODING FUNCTION--------------------------------------------------------------- 
def encode(sr, baud, f1, f0, msglen, startlen, seed_msg): 
    #Initialise Variables 
    T1 = 1/f1 
    T0 = 1/f0 
    A = 1 
    dt = 1/sr 
 
    bit_time = 1/baud 
    t = scipy.arange(0,bit_time,dt) 
 
    #returns a float array for 1 or 0 
    def one(): 
        return 2*scipy.pi*f1*scipy.ones(int(sr/baud))  
    def zero(): 
        return 2*scipy.pi*f0*scipy.ones(int(sr/baud))  
 
    #Initialising original bit message--------------------------------------------------------------------------
-------------------------------------------- 
    original_bitmsg = []                                    #array for original bit message 
    random.seed(seed_msg)                                         #seed for generating random sequence 
    for x in range(msglen): 
        original_bitmsg += [random.randint(0,1)] 
 
    start = []                         
    for x in range(1,startlen):                                    #creation of start sequence 
        start = start + x*[0] 
        start = start + x*[1] 
 
    message = 50*[1] + start +[0]+original_bitmsg +50*[1]    
 
    omega = scipy.zeros(0)                                  #array for phases          
    for bit in message: 
        if bit: 
            omega = scipy.append(omega, one()) 
        else: 
            omega = scipy.append(omega, zero()) 
 
    phases = scipy.cumsum(omega)*dt 
    wave = A * scipy.sin(phases) 
             
    scipy.io.wavfile.write("sample.wav", sr, wave) 
    return wave 
#FUNCTIONS FOR 
FUN*************************************************************************
***************************** 
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def cls(): 
    print("\n"*70) 
 
def printf(): 
    scipy.set_printoptions(threshold=scipy.nan) 
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