
Indexing Transformations for
Relational Symbolic Trajectory Evaluation

1075201

 A dissertation submitted for the degree of
 Computer Science (Part B)

Trinity 2025

Word Count: 4998

Abstract

Symbolic Trajectory Evaluation (STE) is a symbolic model checking method for hardware
verification. It makes verification more tractable by symbolically simulating families of
related initial states over an abstracted circuit, a technique called symbolic indexing.
Relational STE (rSTE) is a significant reformulation of the original STE logic and method
to allow for arbitrary relational properties to be verified.

This project reinvents the theory of symbolic indexing transformations, previously limited
to STE, to allow rSTE to exploit symbolic indexing abstractions systematically. We
formulate a new theory for efficient indexing transformations on a subclass of abstractions
called partitioned abstractions in rSTE, going beyond the original theory for STE to
handle so-called symbolic constants. We also discuss methods for dealing with environ-
mental constraints, a significant weakness of the original STE method.

These procedures are implemented in the industry standard verification tool Jasper and
our experiments show them to be more efficient on uniform circuits compared to vanilla
symbolic simulation without symbolic indexing.

1

Contents

Abstract . 1
1. Introduction . 4

1.1. Starting Point for this Research . 6
1.2. Contributions . 7
1.3. Relation to Companion Project . 7

2. Theory for Relational STE . 8
2.1. Design Under Test, Specifications and Relational Properties 8

2.1.1. Relational Properties with SVA . 8
2.1.2. Output Constraints . 8
2.1.3. Antecedents . 9

2.2. Indexing Relations and Transformations . 9
2.2.1. Preimage Operations . 10
2.2.2. Image Operation . 10
2.2.3. Relationship between Preimages . 10
2.2.4. Indexing Coverage Condition . 11
2.2.5. Constructing Indexing Relations . 11

2.3. rSTE Model Checking Procedure . 11
2.4. Simplified Checking for Unrestricted Output Constraints . 12
2.5. Soundness of Model Checking Procedure . 13

2.5.1. Symbolic Simulation Invariants . 13
2.5.2. Output Constraint Checking . 15
2.5.3. Alternative Checking by Reversing the Indexing . 16
2.5.4. Counterexample Analysis . 17

3. Partitioned Abstraction Relations . 18
3.1. Efficient Weak Preimage Computation . 18
3.2. Efficient Strong Preimage Computation . 21

4. Verification Under Environmental
Constraints . 22
4.1. Indexing Relation Restriction . 22

4.1.1. Preserve Partitioned Indexing Relation by Conditioning Antecedent . . 23
4.2. Parametric Encoding . 23

4.2.1. Parametric Encoding of Indexing Relations . 24
4.2.1.1. Equivalence to Indexing Relation Restriction 26

2

4.2.2. Parameterise Before Abstraction . 27
5. Experiments and Evaluation . 28

5.1. Content-Addressable Memory (CAM) . 28
5.1.1. Results . 29

5.2. Multi-Input Maximum Circuit . 32
5.2.1. Manual Indexing Relation . 34
5.2.2. Results . 36

6. Conclusion . 38
6.1. Future Work . 38

Bibliography . 39

3

Chapter 1
Introduction

Formal verification is the process of proving that a system satisfies a given specification
or set of properties.

Symbolic Trajectory Evaluation (STE) [1], [2], [3] is a symbolic model checking technique
[4] for perform hardware formal verification on circuits. It allows the verification of func-
tional properties while incorporating circuit abstraction by grouping families of related
input cases together and simulating them symbolically. STE has had particular success
in the verification of memory circuits [5], [6], which have highly regular structures that
can be exploited by abstraction.

The core idea of STE is performing circuit simulation over a 3-valued domain of “true”,
“false” and “don’t know” (X) that is ordered by information content [7]. On any concrete
set of inputs over the 3-valued domain, a simulator can compute the output of the circuit,
processing each logical gate based on a modified truth table to account for the X value,
such as in Table 1.

AND 0 1 X

0 0 0 0

1 0 1 X

X 0 X X

D-Latch 0 1 X

0 0 0 0

1 1 1 1

X X X X

Table 1: 3-valued Excitation Function for AND Gate and D-Latch

We can use this 3-valued simulation to observe behaviours of circuits on groups of related
inputs. For example, by simulating an AND gate on the inputs 0 and 𝑋, we can observe
that the output is 0 and thus conclude that 0 ∧ 0 = 1 ∧ 0 = 0. This has allowed us to merge
the analysis of two cases that we would have to simulate separately in a conventional 2-
valued Boolean simulation.

4

Furthermore, rather than doing simulation of only one concrete instance of 3-valued inputs
at once, we do multiple 3-valued simulations at once via symbolic simulation. In the case
of basic Boolean simulation, we could start by assigning a variable to each input and then
propagate these values through the circuit, building up a propositional formula at each
node that represents the truth value of the circuit node.

For our 3-valued simulation, we do this symbolic simulation using a pair of Boolean
formulae over “indexing variables” on each circuit node. For each node, these are called
the “high” and “low” expressions and have the following semantics.¹

𝐻𝑠 = 0 𝐻𝑠 = 1

𝐿𝑠 = 0 𝑠 is X 𝑠 is 1

𝐿𝑠 = 1 𝑠 is 0 s is ⊤

Table 2: Semantics of High and Low Expressions

where ⊤ represents inconsistent information.

The symbolic simulator propagates these high and low expressions through the circuit.
For example, for an AND gate, on inputs with expressions (ℎ𝐴, 𝑙𝐴) and (ℎ𝐵, 𝑙𝐵), the
output produced would be (ℎ𝐴 ∧ ℎ𝐵, 𝑙𝐴 ∨ 𝑙𝐵).

Symbolic simulators generally represent these expressions as reduced, ordered binary
decision diagrams (BDDs) [8] that allow for efficient manipulation and thus simulation of
the circuit. We term these pairs of BDDs as dual-rail BDDs.

As an example, consider verification of a 3-input AND gate. We would like to prove that
𝑜 = 𝑎 ∧ 𝑏 ∧ 𝑐 for inputs 𝑎, 𝑏, 𝑐. To use STE to verify the AND gate, observe that rather
than simulating all 23 different Boolean input assignments to the circuit, it is sufficient
to simulate 4 cases under the 3-valued domain:

𝑝 ∧ 𝑞 : 𝑎 = 𝑏 = 𝑐 = 1

𝑝 ∧ 𝑞 : 𝑎 = 0, 𝑏 = 𝑐 = 𝑋

𝑝 ∧ 𝑞 : 𝑏 = 0, 𝑎 = 𝑐 = 𝑋

𝑝 ∧ 𝑞 : 𝑐 = 0, 𝑎 = 𝑏 = 𝑋

¹This implementation strategy is the modern one implemented in Jasper. The legacy literature[3] had
different names and interpretations for the two expressions.

5

We can enumerate these cases symbolically by assigning them propositional formulae in
terms of indexing variables 𝑝 and 𝑞. Using propositional formulae to do case-splitting this
way is termed as symbolic indexing.

To apply this symbolic indexing scheme, we will set the dual rail inputs as follows:

ℎ𝑎 ≔ 𝑝 ∧ 𝑞, 𝑙𝑎 ≔ 𝑝 ∧ 𝑞

ℎ𝑏 ≔ 𝑝 ∧ 𝑞, 𝑙𝑏 ≔ 𝑝 ∧ 𝑞

ℎ𝑐 ≔ 𝑝 ∧ 𝑞, 𝑙𝑐 ≔ 𝑝 ∧ 𝑞

We then run the symbolic simulator, getting output (ℎ𝑜, 𝑙𝑜) = (𝑝 ∧ 𝑞, 𝑝 ∨ 𝑞). We can then
conclude that the AND gate outputs true if and only if 𝑎 = 𝑏 = 𝑐 = 1 and false otherwise,
which is the desired property.

1.1. Starting Point for this Research
Legacy literature on STE [1] provided a theory of writing stimuli (antecedent) to combi-
national circuits using a linear temporal logic, specifying an intended functional output
(consequent) and then using the 3-valued symbolic simulator to verify that the circuit
would satisfy the consequent under the given antecedent. But, it was difficult in this
setting to write stimuli in a manner that covered all relevant input cases and to interpret
the results of the symbolic simulation to check properties. The theory of indexing relation
transformations [9] was therefore developed to simplify usage of STE.

To use STE with indexing transformations, we first set up an antecedent and consequent
without any abstraction from Xs. We then apply a transformation on the antecedent
and consequent based on an indexing relation that mapped groups of target assignments
to corresponding indexing variable assignments. We then check that the transformed
antecedent leads to the transformed consequent holding on the circuit. Assuming a
technical coverage condition held for the indexing relation, this would imply that the
original property held on the circuit. Further work was later done to automate the process
of generating effective indexing relations via an automatic abstraction algorithm [10].

This theory and its implementation had promise, but there were two impediments to it
being used across the semiconductor industry. First, the tools that implemented these
methods were proprietary to Intel [11], although academic prototypes also existed [12].
Second, the abstraction method proposed in these papers did not incorporate environ-
mental constraints, which are virtually essential for real-world use.

6

Since then, a variant of STE known as relational STE (rSTE) [13] that allows for
specifications with arbitrary relational properties has been described, but not formalized.
Furthermore, a dual-rail BDD symbolic simulator has been developed within the industry
standard formal verification tool Jasper [14].

1.2. Contributions
This project reinvents the theory of symbolic indexing transformations for rSTE and
brings it to the modern day in Jasper.

• We provide a procedure for incorporating symbolic indexing into the rSTE workflow
via indexing transformations. We provide proofs of soundness for the procedure of
indexing transformations and interpretations of the simulation outputs to derive proofs
and counterexamples.

• We provide new proofs and formal descriptions for efficient preimage computations on
a subclass of indexing relations known as partitioned indexing relations that extends
the existing technique by incorporates symbolic constants mentioned in [10].

• We formulate theory for dealing with environmental constraints in rSTE using
ideas from [9] but updated to consider partitioned indexing relations with symbolic
constants.

• We implement the theoretical procedures to perform rSTE with symbolic indexing
in Jasper, including procedures for efficient indexing transformations of partitioned
indexing relations, running of symbolic simulator with transformed antecedent, and
checking of transformed output.

• We evaluate the efficiency of rSTE on two scalable example circuits: a Content-
Addressable Memory (CAM) and a multi-input maximum circuit. For each of these,
we evaluate the technique with the use of a manually constructed indexing relation
and an automatically generated one when compared to symbolic simulation without
symbolic indexing. We used a manual indexing of the CAM based on [6] and crafted
an original one for the maximum circuit.

1.3. Relation to Companion Project
While this project focuses on the process of using indexing relations to perform rSTE with
symbolic indexing, the companion project focuses on the automatic generation of indexing
relations for rSTE. The two projects are complementary and can be used together to
perform symbolically indexed rSTE with minimal user input.

7

Chapter 2
Theory for Relational STE

2.1. Design Under Test, Specifications and Relational Properties
We make use of Jasper to process a circuit design under test (DUT) written in SystemVer-
ilog at Register Transfer Level (RTL).

2.1.1. Relational Properties with SVA
Traditionally STE properties were functional properties that were written in a linear
temporal logic that allowed you to assert that specific signals would be high or low
depending on the specific stimulus on the input of the circuit.

However, rSTE allows for more general properties through the use of a bound specification
circuit that implements properties written as SystemVerilog Assertions (SVA). When the
DUT is elaborated, the specification circuit will be instantiated together with it. The
specification takes as input, the inputs to the DUT, along with internal/output signals
from the DUT that the are relevant to the properties checked.

The key to checking relational properties is the insight that SVA properties can be
expressed as a circuit that produces a signal that is high if the property holds in that clock
cycle and low otherwise. This is done as part of Jasper’s internal symbolic simulation
model construction. We call the signal that represents the property being held as the
“property wire”.

When using the symbolic simulator without symbolic indexing, we will do a Boolean
symbolic simulation and check that the property wire is high under any assignment of
inputs.

2.1.2. Output Constraints
To incorporate symbolic indexing via indexing transformations, we build an additional
layer of output constraints on top of the SVA properties that we want to check. These
output constraints will mirror the LTL properties from STE but are written in a 5-tuple
form as implemented in VOSSII [15]:

8

Output Constraint: [(signal, tickStart, tickEnd, highExpr, lowExpr)]

Each output constraint consists of two parts:
1. Positive output constraint: When highExpr is true, the signal should be high.
2. Negative output constraint: When lowExpr is true, the signal should be low.

If neither are true, then we don’t assert anything about the signal. highExpr and lowExpr
are called the guards of the output constraint. The tickStart and tickEnd form the range
of clock cycles that the output constraint should hold for.

Before doing the symbolic indexing, for each SVA property we wish to check, we will build
a corresponding output constraint of the form:

Output Constraint: [(propertyWire, tickStart, tickEnd, True, False)]

This asserts that the SVA property should always hold. Such output constraints are
termed “unrestricted output constraints”.

2.1.3. Antecedents
The antecedent (stimulus) of the circuit will also be written in the 5-tuple form. The
tuple (signal, tickStart, tickEnd, highExpr, lowExpr) in the stimulus, means that
the signal is high when highExpr is true, low when lowExpr is true and X or inconsistent
otherwise.

2.2. Indexing Relations and Transformations
Indexing relations are used to symbolic represent input case-splitting to perform symbolic
indexing and are the basis of the indexing transformation procedure.

Indexing relations 𝑅[𝑋, 𝐶, 𝑇] are Boolean formulae over propositional variables where
• 𝑋 are the indexing propositional variables that index cases
• 𝑇 are the target propositional variables that are indexed. These variables correspond

to input wires in the circuit and assignments to them correspond to concrete inputs.
• 𝐶 are the symbolic constants that correspond to input wires that should not be indexed.

The indexing relation 𝑅[𝑋, 𝐶, 𝑇] is interpreted as:
• For each 𝑋, 𝐶, we cover the cases 𝑇 , 𝐶 where ∃𝑇𝑅[𝑋, 𝐶, 𝑇].

Note that the indexing relation 𝑅′[(𝑋, 𝐶′), ∅, (𝐶, 𝑇)] = 𝑅[𝑋, 𝐶, 𝑇] ∧ ⋀(𝐶 = 𝐶′) that
doesn’t use symbolic constants is equivalent to 𝑅[𝑋, 𝐶, 𝑇] when doing indexing transfor-
mations.

9

Symbolic constants don’t improve the expressive power of indexing relations, but rather
simplify them to achieve higher efficiency. When using the automatic abstraction algo-
rithm in the companion paper, symbolic constants also provide a crude way to prevent
over-abstraction since the algorithm will not include them in abstraction.

2.2.1. Preimage Operations
Suppose
• 𝑃 [𝐶, 𝑇] represents some set of input cases
• 𝑅[𝑋, 𝐶, 𝑇] is an indexing relation

The weak preimage of 𝑃 under 𝑅,

𝑃𝑅[𝑋, 𝐶] = ∃𝑇 (𝑅[𝑋, 𝐶, 𝑇] ∧ 𝑃 [𝐶, 𝑇])

is the set of (𝑋, 𝐶) that cover at least one (𝑇 , 𝐶) case in 𝑃

The strong preimage of 𝑃 under 𝑅,

𝑃𝑅[𝑋, 𝐶] = 𝑃𝑅 ∧ ¬∃𝑇(𝑅[𝑋, 𝐶, 𝑇] ∧ ¬𝑃 [𝐶, 𝑇])

is the set of (𝑋, 𝐶) that cover at least one case in 𝑃 and don’t cover any cases not in 𝑃 .

2.2.2. Image Operation
The image of 𝐻[𝑋, 𝐶]

im(𝐻, 𝑅)[𝐶, 𝑇] = ∃𝑋(𝑅[𝑋, 𝐶, 𝑇] ∧ 𝐻[𝑋, 𝐶])

is the set of cases indexed by 𝐻[𝑋, 𝐶] under 𝑅.

2.2.3. Relationship between Preimages
For any fixed 𝑅 and any given 𝑃 and (𝑋, 𝐶) one of the following holds:
• 𝑋, 𝐶 indexes cases only in 𝑃
• 𝑋, 𝐶 indexes cases only in ¬𝑃
• 𝑋, 𝐶 indexes cases in both 𝑃 and ¬𝑃
• 𝑋, 𝐶 indexes cases in neither 𝑃 nor ¬𝑃

Any 𝑋, 𝐶 that fall into the 4th category must correspond to empty indexing cases, i.e.
don’t map onto any (𝐶, 𝑇). This is independent of 𝑃 , thus, we term the union of the first
3 cases as the domain of 𝑅.

dom(𝑅)[𝑋, 𝐶] = ∃𝑇 (𝑅[𝑋, 𝐶, 𝑇])

10

Observe that
• The weak preimage is the set of 𝑋, 𝐶 that fall into the 1st and 3rd categories.
• The strong preimage is the set of 𝑋, 𝐶 that fall into the 1st category.

The following are equivalent definitions of the strong preimage operation:

𝑃𝑅[𝑋, 𝐶] = dom(𝑅) ∧ 𝑃𝑅

= dom(𝑅) ∧ (∀𝑇 (𝑅[𝑋, 𝐶, 𝑇] → 𝑃[𝐶, 𝑇]))

2.2.4. Indexing Coverage Condition
For each output constraint 𝑖 that we wish to check, we let the guards be 𝑃𝑖 and 𝑄𝑖. The
total space of inputs we need to check is then 𝐵[𝐶, 𝑇] = ⋁

𝑖
(𝑃𝑖 ∨ 𝑄𝑖). In order for our

abstraction to fully cover this space, we require that

∀𝑇∀𝐶(𝐵[𝑇 , 𝐶] → ∃𝑋(𝑅[𝑋, 𝐶, 𝑇]))

This is the coverage condition, and it is required for the indexing transformation procedure
to be sound.

For unrestricted output constraints, we will have 𝑃𝑖 = True, 𝑄 = False. In this case,
𝐵[𝐶, 𝑇] ≡ True so the coverage condition takes the simpler form:

∀𝑇∀𝐶∃𝑋(𝑅[𝑋, 𝐶, 𝑇])

2.2.5. Constructing Indexing Relations
To formulate an indexing relation, we will need to encode the case-splitting for the
different input cases that elicit different outputs from the circuit. This is done manually
for specific circuits in the examples of Section 5.1 and Section 5.2.

The companion project reinvents the automatic abstraction algorithm from [10] and
implements it within Jasper. It produces an indexing relation that satisfies the coverage
condition by construction.

2.3. rSTE Model Checking Procedure
Suppose we are given a circuit, an indexing relation 𝑅, and an output constraint list cout.
We will describe the procedure to prove that the output constraints hold.

We first construct unabstracted antecedents for each of the input variables and time steps

antv = [(signal, t, t, s, not s)]

where 𝑠 is a bdd variable for the signal at time 𝑡.

11

We then apply the strong preimage operations on the high and low expressions of the
antecedent tuples as follows:

antv = [(s, t, t, s^R, (not s)^R)]

Next we run the symbolic simulator with the transformed antecedent. This produces an
evaluation sequence which will contain highExpr and lowexpr BDD expressions for when
a signal at a certain time step is known to be high or low.

From this evaluation sequence, we can then check the output constraints. To check a
output constraint of the form (signal, tickStart, tickEnd, P, Q) , we will transform
the output constraint to

(signal, tickStart, tickEnd, P_R, Q_R)

where 𝑃𝑅 and 𝑄𝑅 are the weak preimages of 𝑃 and 𝑄.

Then we analyse the highexpr and lowexpr BDD expressions from the evaluation sequence
for the signal at each of the ticks in the tick range. Suppose that at a given tick 𝑡, for the
property wire the high expression is 𝐻[𝑋, 𝐶] and the low expression is 𝐿[𝑋, 𝐶].

If (𝑃𝑅 → 𝐻)[𝑋, 𝐶] ≡ True and (𝑄𝑅 → 𝐿)[𝑋, 𝐶] ≡ True, then the output constraint is
satisfied.

If (𝑃𝑅 ∧ 𝐿) ≠ False, we have disproven the positive output constraint. im(𝑃𝑅 ∧ 𝐿, 𝑅)
symbolically represents the counterexamples found in terms of the original circuit inputs.

Similarly, if (𝑄𝑅 ∧ 𝐻) ≠ False, we have disproven the negative part of the property.

It is possible to not prove the property but also have no counterexamples. This occurs
in cases where the antecedent does not provide enough information to prove or disprove
the property. This is called a weak disagreement [3] and requires refining the indexing
relation.

2.4. Simplified Checking for Unrestricted Output Constraints
A benefit of the unrestricted output constraint form is that the property guards are simple
and thus have nice properties related to the indexing transformation.

To check the properties, we need to know the weak/strong preimage images of the guards.
However, we have the following:

12

True𝑅 = True𝑅 = dom(𝑅)[𝑋, 𝐶]

False𝑅 = False𝑅 = False

This means that we only need to take a single preimage operation to get the domain
and use that for checking all the properties written in this form. In fact, computing the
domain of a partitioned indexing relation (Section 3) is a simple operation that will be
described later.

Furthermore, analysis of counterexamples is also simplified.

True𝑅 ∧ 𝐿 = dom(𝑅)[𝑋, 𝐶] ∧ 𝐿 = 𝐿

The 2nd equality is since we use strong preimages of target variables and their negations
to transform the antecedents, so for any signal and time step, 𝐻 and 𝐿 don’t include any
cases that are not in the domain of 𝑅.

2.5. Soundness of Model Checking Procedure

2.5.1. Symbolic Simulation Invariants
Let st(𝐶, 𝑇) be true iff the signal and time pair st is high under the untransformed
antecedent under some assignment of the variables in 𝐶, 𝑇 .

Consider the low and high expressions in any signal timestep pair. We have that

𝐻st[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇] → st(𝐶, 𝑇)

𝐿st[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇] → st(𝐶, 𝑇)

(For all 𝑋, 𝐶, 𝑇)

This can be proved via induction on the fan-in of st.

The main basecase is where 𝑠 is an input variable corresponding to a certain time step,
with highexpr 𝑃 and lowexpr 𝑃 . In this case, since we apply the strong preimage to the
antecedents, we have that

𝐻 = 𝑃𝑅 = dom(𝑅) ∧ ∀𝑇(𝑅[𝑋, 𝐶, 𝑇] → 𝑃[𝐶, 𝑇])

𝐿 = 𝑃𝑅 = dom(𝑅) ∧ ∀𝑇(𝑅[𝑋, 𝐶, 𝑇] → 𝑃[𝐶, 𝑇])

This directly gives us that for all 𝑋, 𝐶, 𝑇 where 𝐻[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇], we have 𝑃 [𝐶, 𝑇].
But st(𝐶, 𝑇) = 𝑃 [𝐶, 𝑇] since 𝑃 will be a target variable / symbolic constant corresponding

13

to the stimulus to the signal at the time step in the untransformed antecedent, so we are
done.² The proof for 𝐿[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇] → 𝑃[𝐶, 𝑇] is analogous.

The subtle basecase is circuit nodes with state, such as a latch, before any stimulus from
the antecedent reaches it. In this case, the high and low expressions will be false so the
invariants hold trivially.

An inductive case example:

Suppose 𝑠 = 𝑠1 ∧ 𝑠2. Since the AND gate is combinational, we fix any time step. Let
(𝐻𝑠1

, 𝐿𝑠1
) and (𝐻𝑠2

, 𝐿𝑠2
) be the high and low expressions for 𝑠1 and 𝑠2 respectively.

The symbolic simulator will give us (𝐻𝑠, 𝐿𝑠) = (𝐻𝑠1
∧ 𝐻𝑠2

, 𝐿𝑠1
∨ 𝐿𝑠2

). Under any fixed
𝑋, 𝐶, 𝑇 , Figure 1 gives us a proof that 𝐻𝑠[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇] → 𝑠(𝐶, 𝑇) and 𝐿𝑠[𝑋, 𝐶] ∧
𝑅[𝑋, 𝐶, 𝑇] → ¬𝑠(𝐶, 𝑇).

Other circuit components can be proven in a similar manner.

²Note that we don’t use the domain part for this. It just serves to remove useless/inconsistent indexing
cases, which is useful for counterexample analysis.

14

 1. 𝐻𝑠[𝑋, 𝐶] Assume
 2. 𝑅[𝑋, 𝐶, 𝑇] Assume

1 3. 𝐻𝑠1
[𝑋, 𝐶] ∧ 𝐻𝑠2

[𝑋, 𝐶] 𝐻𝑠 = 𝐻𝑠1
∧ 𝐻𝑠2

 4. 𝐻𝑠1
[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇] → 𝑠1(𝐶, 𝑇) Inductive Hypothesis

 5. 𝐻𝑠2
[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇] → 𝑠2(𝐶, 𝑇) Inductive Hypothesis

2, 3, 4 6. 𝑠1
2, 3, 5 7. 𝑠2
6, 7 8. 𝑠 𝑠 = 𝑠1 ∧ 𝑠2

1, 2, 8 9. 𝐻𝑠[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇] → 𝑠(𝐶, 𝑇) Conclusion

 1. 𝐿𝑠[𝑋, 𝐶] Assume
 2. 𝑅[𝑋, 𝐶, 𝑇] Assume

1 3. 𝐿𝑠1
[𝑋, 𝐶] ∨ 𝐿𝑠2

[𝑋, 𝐶] 𝐿𝑠 = 𝐿𝑠1
∨ 𝐿𝑠2

 4. 𝐿𝑠1
[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇] → ¬𝑠1(𝐶, 𝑇) Inductive Hypothesis

 5. 𝐿𝑠1
[𝑋, 𝐶] Assume

2, 4, 5 6. ¬𝑠1(𝐶, 𝑇)
6 7. ¬𝑠 𝑠 = 𝑠1 ∧ 𝑠2

 8. 𝐿𝑠2
[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇] → ¬𝑠2(𝐶, 𝑇) Inductive Hypothesis

 9. 𝐿𝑠2
[𝑋, 𝐶] Assume

2, 8, 9 10. ¬𝑠2(𝐶, 𝑇)
10 11. ¬𝑠
3, 5-7, 9-11 12. ¬𝑠
1, 2, 12 13. 𝐿𝑠[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇] → ¬𝑠(𝐶, 𝑇) Conclusion

Figure 1: Inductive Case on AND Gate

2.5.2. Output Constraint Checking
Positive output constraints are of the form:

∀𝐶∀𝑇(𝑃 [𝐶, 𝑇] → 𝑠(𝐶, 𝑇))

If 𝑃𝑅[𝑋, 𝐶] → 𝐻[𝑋, 𝐶] ≡ True and the coverage condition ∀𝑇∀𝐶(𝐵[𝐶, 𝑇] →
∃𝑋(𝑅[𝑋, 𝐶, 𝑇])) holds, then we know the output constraint will hold as shown in Figure 2.

15

 1. Fresh X, C, T
 2. 𝑃 [𝐶, 𝑇] Assume
 3. 𝑅[𝑋, 𝐶, 𝑇] Assume

2, 3 4. 𝑃 [𝐶, 𝑇] ∧ 𝑅[𝑋, 𝐶, 𝑇]
4 5. ∃𝑇 (𝑃 [𝐶, 𝑇] ∧ 𝑅[𝑋, 𝐶, 𝑇])
5 6. 𝑃𝑅[𝑋, 𝐶] Definition of 𝑃𝑅

1, 6 7. ∀𝑋, 𝐶, 𝑇 (𝑃 [𝐶, 𝑇] ∧ 𝑅[𝑋, 𝐶, 𝑇] → 𝑃𝑅[𝑋, 𝐶])

Since 𝑋, 𝐶, 𝑇 were
arbitrary. Lemma

 1. Fresh 𝐶, 𝑇
 2. ∀𝑋(𝑃𝑅[𝑋, 𝐶] → 𝐻[𝑋, 𝐶]) Premise
 3. 𝐵[𝐶, 𝑇] → ∃𝑋(𝑅[𝑋, 𝐶, 𝑇]) Premise
 4. 𝑃 [𝐶, 𝑇] Assume
 5. ∀𝑋, 𝐶, 𝑇 (𝑃 [𝐶, 𝑇] ∧ 𝑅[𝑋, 𝐶, 𝑇] → 𝑃𝑅[𝑋, 𝐶]) Lemma above

4 6. 𝐵[𝐶, 𝑇] Definition of 𝐵[𝐶, 𝑇]
3, 6 7. Fresh 𝑋* s.t. 𝑅[𝑋*, 𝐶, 𝑇]
4, 5, 7 8. 𝑃𝑅[𝑋*, 𝐶]
2, 8 9. 𝐻[𝑋*, 𝐶]

9 10. 𝑠(𝐶, 𝑇)

Symbolic Simulation
Invariants

4, 10 11. 𝑃 [𝐶, 𝑇] → 𝑠(𝐶, 𝑇)

1, 11 12. ∀𝐶∀𝑇(𝑃 [𝑇 , 𝐶] → 𝑠(𝐶, 𝑇))

Since 𝐶, 𝑇 were
arbitrary

Figure 2: Proof of Positive Output Constraint Check

We can prove the check for negative output constraints of the form

∀𝐶∀𝑇(𝑃 [𝐶, 𝑇] → ¬𝑠(𝐶, 𝑇))

in a similar manner.

2.5.3. Alternative Checking by Reversing the Indexing
Another way to do the check is to take the image of 𝐻[𝑋, 𝐶] under the indexing relation,
im(𝐻, 𝑅)[𝐶, 𝑇]. This will symbolically represent all the cases for which we know the
property will hold.

16

𝐶, 𝑇 ∈ im(𝐻, 𝑅) ⇒ ∃𝑋(𝐻[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇])

⇒ 𝐻[𝑋*, 𝐶] ∧ 𝑅[𝑋*, 𝐶, 𝑇] for some 𝑋*

⇒ 𝑠(𝐶, 𝑇) by symbolic simulation invariant

We can then check that 𝑃 → im(𝐻, 𝑅) ≡ True. If so then the property is true. On some
circuits and indexing relations, this method can avoid weak disagreements compared to
the preimage method. This is particularly true if some cases in 𝑃 are indexed by multiple
𝑋, 𝐶.Tf the number of indexing variables is typically much less than the number of target
variables, so this method can result in large BDDs that may be infeasible to compute.

2.5.4. Counterexample Analysis
Suppose that 𝑃𝑅 ∧ 𝐿 ≠ False. Let (𝑋, 𝐶) be such that (𝑃𝑅 ∧ 𝐿)[𝑋, 𝐶] is true. We show
that (𝑋, 𝐶) is a counterexample to the property ∀𝐶∀𝑇(𝑃 [𝐶, 𝑇] → 𝑠(𝐶, 𝑇)).

 1. 𝑃𝑅[𝑋, 𝐶] ∧ 𝐿[𝑋, 𝐶] Premise
1 2. dom(𝑅)[𝑋, 𝐶] ∧ ∀𝑇 (𝑅[𝑋, 𝐶, 𝑇] → 𝑃[𝐶, 𝑇]) Definition of 𝑃𝑅

2 3. ∃𝑇 (𝑅[𝑋, 𝐶, 𝑇]) Definition of dom(𝑅)
3 4. Fresh 𝑇* s.t. 𝑅[𝑋, 𝐶, 𝑇*]
2, 4 5. 𝑃 [𝐶, 𝑇*]

 6. 𝐿[𝑋, 𝐶] ∧ 𝑅[𝑋, 𝐶, 𝑇*] → ¬𝑠(𝐶, 𝑇*)

Symbolic Simulation
Invariants

1, 4, 6 7. ¬𝑠(𝐶, 𝑇*)
5, 7 8. 𝑃 [𝐶, 𝑇*] → ¬𝑠(𝐶, 𝑇*)
8 9. ∃𝐶∃𝑇 (𝑃 [𝐶, 𝑇] → ¬𝑠(𝐶, 𝑇))
9 10. ¬∀𝐶∀𝑇(𝑃 [𝐶, 𝑇] → 𝑠(𝐶, 𝑇)) Property disproven

Figure 3: Proof for Positive Property Counterexample Check

It is practical to note that that the set of counterexamples we find is

{(𝐶, 𝑇) | ∃𝑋(𝑅[𝑋, 𝐶, 𝑇] ∧ 𝐿[𝑋, 𝐶] ∧ 𝑃𝑅[𝑋, 𝐶])}

which is described by the image operation on 𝑃𝑅 ∧ 𝐿, im(𝑃𝑅 ∧ 𝐿, 𝑅).

We can prove that the counterexample analysis for negative properties is correct in a
similar manner.

17

Chapter 3
Partitioned Abstraction Relations

An important subclass of indexing relations that we consider is the partitioned indexing
relation. A partitioned indexing relation is one that can be expressed in the following form:

𝑅 = ⋀(hexpr → expr ∧ lexpr → expr)

Where expr is either some target variable or an expression of symbolic constants
while hexpr and lexpr are in terms of only the indexing variables.

In the implementation, a partitioned abstraction relation is represented as a list of tuples
of the form:

[(expr = targVar / Cexpr, hexpr, lexpr)]

The indexing relations produced by the automatic abstraction algorithm and the manually
constructed indexing relations that we use in our scalable examples are partitioned
abstractions.

Partitioned abstractions allow computation of preimages which are critical for performing
indexing transformations at scale.

3.1. Efficient Weak Preimage Computation
We first normalise 𝑅 into

𝑅 = 𝑆[𝑋, 𝐶] ∧ 𝑈[𝑋, 𝑇]

where 𝑈[𝑋, 𝑇] = ⋀
𝑡𝑖∈ TargVars

(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖)

We can then make several observations.

Firstly,

dom(𝑅)[𝑋, 𝐶] = 𝑆 ∧ ⋀
𝑖

ℎ𝑖 ∧ 𝑙𝑖

18

Proof:

dom(𝑅)[𝑋, 𝐶] = ∃𝑇𝑅[𝑋, 𝐶, 𝑇]

= 𝑆[𝑋, 𝐶] ∧ ∃𝑇𝑈[𝑋, 𝑇]

= 𝑆[𝑋, 𝐶] ∧ ⋀
𝑖

(∃𝑡𝑖(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖))

= 𝑆[𝑋, 𝐶] ∧ ⋀
𝑖

(((ℎ𝑖 → 1) ∧ (𝑙𝑖 → 0)) ∨ ((ℎ𝑖 → 0 ∧ 𝑙𝑖 → 1)))

= 𝑆[𝑋, 𝐶] ∧ ⋀
𝐼

(¬𝑙𝑖 ∨ ¬ℎ𝑖)

= 𝑆 ∧ ⋀
𝑖

ℎ𝑖 ∧ 𝑙𝑖

Thus we are able to compute the domain of the indexing relation easily.

Secondly, to compute the preimage of some guard 𝑃 [𝐶, 𝑇], we let 𝑅 ↓ 𝑃 denote that the
part of the indexing relation that mentions target variables present in 𝑃 . Specifically, if
ℱ = FreeTargVars(𝑃) then

𝑅 ↓ 𝑃 = 𝑆[𝑋, 𝐶] ∧ ⋀
𝑡𝑖∈ℱ

(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖)

We have that 𝑃𝑅 = dom(𝑅) ∧ 𝑃𝑅↓𝑃

Proof:

19

𝑃𝑅[𝑋, 𝐶] = ∃𝑇 (𝑅[𝑋, 𝐶, 𝑇] ∧ 𝑃 [𝐶, 𝑇])

= ∃𝑇
(
((𝑆[𝑋, 𝐶] ∧ ⋀

𝑡𝑖∉ℱ
(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖) ∧ ⋀

𝑡𝑖∈ℱ
(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖) ∧ 𝑃 [𝐶, 𝑇ℱ]

)
))

= 𝑆[𝑋, 𝐶] ∧ ∃𝑇¬ℱ
(
((⋀

𝑡𝑖∉ℱ
(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖)

)
))

 ∧ ∃𝑇ℱ(⋀
𝑡𝑖∈ℱ

(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖) ∧ 𝑃 [𝐶, 𝑇ℱ])

= 𝑆[𝑋, 𝐶] ∧ ∃𝑇¬ℱ
(
((⋀

𝑡𝑖∉ℱ
(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖)

)
)) ∧ ∃𝑇ℱ(⋀

𝑡𝑖∈ℱ
(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖))

 ∧ 𝑆[𝑋, 𝐶] ∧ ∃𝑇ℱ(⋀
𝑡𝑖∈ℱ

(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖) ∧ 𝑃 [𝐶, 𝑇ℱ])

= 𝑆[𝑋, 𝐶] ∧ ∃𝑇(⋀
𝑡𝑖∈ targVars

(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖))

 ∧ ∃𝑇ℱ(𝑆[𝑋, 𝐶] ∧ ⋀
𝑡𝑖∈ℱ

(ℎ𝑖 → 𝑡𝑖 ∧ 𝑙𝑖 → 𝑡𝑖) ∧ 𝑃 [𝐶, 𝑇ℱ])

= 𝑆[𝑋, 𝐶] ∧ ⋀
𝑖

(ℎ𝑖 ∧ 𝑙𝑖) ∧ 𝑃𝑅↓𝑃

= dom(𝑅) ∧ 𝑃𝑅↓𝑃

We can further consider common cases of 𝑃 that we will be constructing preimages for.

𝑃𝑅 =

{
{{
{
{{
{dom(𝑅) ∧ 𝑃 if ℱ ∩ TargVars = ∅

dom(𝑅) ∧ 𝑙𝑖 if 𝑃 = 𝑡𝑖
dom(𝑅) ∧ ℎ𝑖 if 𝑃 = 𝑡𝑖
dom(𝑅) ∧ 𝑃𝑅↓𝑃 otherwise

Proof:

If ℱ ∩ TargVars = ∅, 𝑅 ↓ 𝑃 = True,

𝑃𝑅 = dom(𝑅) ∧ ∃𝑇 (True ∧ 𝑃 [𝐶]) = dom(𝑅) ∧ 𝑃 [𝐶]

If 𝑃 = 𝑡𝑖, 𝑅 ↓ 𝑃 = (ℎ𝑖 → 𝑡𝑖) ∧ (𝑙𝑖 → 𝑡𝑖),

𝑃𝑅 = dom(𝑅) ∧ ∃𝑡𝑖((ℎ𝑖 → 𝑡𝑖) ∧ (𝑙𝑖 → 𝑡𝑖) ∧ 𝑡𝑖) = dom(𝑅) ∧ 𝑙𝑖

20

If 𝑃 = 𝑡𝑖, 𝑅 ↓ 𝑃 = (ℎ𝑖 → 𝑡𝑖) ∧ (𝑙𝑖 → 𝑡𝑖),

𝑃𝑅 = dom(𝑅) ∧ ∃𝑡𝑖((ℎ𝑖 → 𝑡𝑖) ∧ (𝑙𝑖 → 𝑡𝑖) ∧ 𝑡𝑖) = dom(𝑅) ∧ ℎ𝑖

3.2. Efficient Strong Preimage Computation
Observe that

𝑃𝑅 = dom(𝑅) ∧ 𝑃𝑅

= dom(𝑅) ∧ ¬(dom(𝑅) ∧ 𝑃𝑅↓𝑃)

= dom(𝑅) ∧ ¬𝑃𝑅↓𝑃

Thus, the final conjunction with dom(𝑅) when computing a preimage is unnecessary if
we are going to immediately be using the preimage to compute a strong preimage.

This represents an important speedup since we will be doing many strong preimage
computations where computing 𝑃𝑅↓𝑃 is easy (such as when 𝑃 = 𝑡𝑖) but conjuncting it
with dom(𝑅) is expensive since dom(𝑅) can be complex.

21

Chapter 4
Verification Under Environmental
Constraints

Environmental constraints are constraints on the inputs to the circuit. They are of the
form 𝐽[𝐶, 𝑇] to denote that we only need a constraint to hold if 𝐽[𝐶, 𝑇] is true. We call
such a constraint a “care predicate”.

4.1. Indexing Relation Restriction
An easy way to include environmental constraints is to just add them to the guards of the
output constraint. We can then check for the property holding under the environmental
constraint as described above.

However, this can lead to weak disagreements for abstractions that merge cases in 𝐽 and
¬𝐽 , since we cannot assume that 𝐽 holds for the 𝑋, 𝐶 indexing these cases.

It is thus desirable to find indexing relations that exactly index cases in 𝐽 and not any
in ¬𝐽 , i.e.

∀𝐶∀𝑇 ((∃𝑋𝑅[𝑋, 𝐶, 𝑇]) → 𝐽[𝐶, 𝑇])

We can get such an indexing relation by conjuncting the original indexing relation and
the input constraint to make a new indexing relation.

𝑅′[𝑋, 𝐶, 𝑇] = 𝑅[𝑋, 𝐶, 𝑇] ∧ 𝐽[𝐶, 𝑇]

This will ensure that the indexing relation only ever indexes target variable assignments
satisfying the care predicate. However, this can still lead to weak disagreements from the
indexing relation being too coarse.

An additional way to mitigate the weak disagreements is to use the alternative checking
method involving reversing the indexing (Section 2.5.3).

22

4.1.1. Preserve Partitioned Indexing Relation by Conditioning Antecedent
The indexing relation restriction unfortunately destroys the partitioned structure of par-
titioned indexing relations, meaning we cannot apply the efficient preimage computations
from Section 3.

However, we can employ an equivalent strategy where we first modify each BDD expres-
sion 𝐸 in the antecedent to the form 𝐸′ ≔ (𝐸 ∧ 𝐽) ∨ 𝐽 ≡ 𝐽 → 𝐸. We then do the strong
preimage computations, allowing us to only consider the indexing cases we know 𝐸 to be
true when the care predicate is true . We modify the guard of the output constraint to
include 𝐽 and do the checking as described above.

This approach will potentially cause some signals to be ⊤, but only on indexing variable
assignments that exclusively index 𝐽 , such as the blue assignment in Figure 6. This is fine
since 𝐽𝑅 and 𝐽𝑅 not will contain such cases, thus not affecting output checking procedures
for neither correctness nor counterexample analysis. Since the only indexing cases that
we consider during analysis are those that index at least one case in 𝐽 , this is equivalent
to the restriction method.

Since the indexing relation is preserved, we can use the efficient partitioned abstraction
preimage operations.

4.2. Parametric Encoding
An alternative approach is to use a parametric encoding [16] of the input constraints.
A parametric encoding uses the param function to compute a substitution of the input
signals with functions of new parameterisation variables.

param takes a list of input constraints and a list of signals 𝑠1, 𝑠2, …, 𝑠𝑛 and computes
Boolean functions 𝑓1, 𝑓2, …, 𝑓𝑛 from new parameterisation variables 𝒑 = {𝑝1, …, 𝑝𝑘} where
𝑘 ≤ 𝑛 for the purpose of substituting 𝑠𝑖 ≔ 𝑓𝑖(𝒑).

These functions satisfy the following conditions:
• (Soundness): ∀𝒑, ⟨𝑠𝑖 ≔ 𝑓𝑖(𝒑) | 𝑖 ∈ 1..𝑛⟩ satisfies the input constraints
• (Completeness): ∀⟨𝑠1, 𝑠2, …, 𝑠𝑛⟩ that satisfy the input constraints, ∃𝒑 𝑠𝑖 = 𝑓𝑖(𝒑)

An efficient algorithm to compute param is described in [16].

The intention of symbolic constants are such that they should not be abstracted or
replaced. Thus, in our analysis of parametric encoding, we will assume that the symbolic
constants are not part of the environmental constraint and thus not passed into param.

23

There are two ways to apply this to deal with environmental constraints.

4.2.1. Parametric Encoding of Indexing Relations
The first strategy is to apply the parametric encoding to transform an independently
computed indexing relation. This was suggested in [9] but not proven sound.

Input: circuit, antecedent, input constraints, output constraints
1. Compute param on the input constraints
2. Substitute each BDD variable in the unrestricted antecedent with the correspond-

ing function from the parametric encoding
3. Compute an indexing relation, possibly via the automatic abstraction algorithm
4. Substitute each BDD variable in the automatic abstraction result with the corre-

sponding function from the parametric encoding
5. Perform indexing transformation on the parameterised antecedent, and output

constraints
6. Perform symbolic simulation
7. Check whether the output constraint holds or a counterexample exists

Output: proven, disproven (with counterexample) or unproven

Figure 4: Parametric Encoding of Indexing Relation

We prove this to be sound.

Parameterising the antecedent is equivalent to binding the parameterisation functions
onto each input to form a larger circuit. For each 𝐶, 𝑇 such that 𝐽[𝐶, 𝑇] holds, we will
have some 𝐶, 𝑇 ′ that maps to it by the completeness of param.

The main base case for the symbolic simulation invariants still holds even though our
input signals are now functions of the parameterisation variables. The input signals 𝑠 are
now replaced with the param functions 𝑓𝑠 and our base case argument will still hold. This
means that the symbolic simulation invariants will still hold.

Furthermore, assuming that the indexing relation 𝑅[𝑋, 𝐶, 𝑇] used satisfies the coverage
condition ∀𝑇∀𝐶(𝐽[𝐶, 𝑇] → ∃𝑋𝑅[𝑋, 𝐶, 𝑇]) then the parameterised indexing relation
𝑅′[𝑋, 𝐶, 𝑇 ′] will also satisfy the coverage condition, in terms of the new parameterisation
variables, i.e. ∀𝑇 ′∀𝐶∃𝑋𝑅′[𝑋, 𝐶, 𝑇 ′] where 𝑇 ′ is the new parameterised input signals.

24

 1. Fresh 𝐶, 𝑇 ′

1 2. Let 𝑇 = 𝑓(𝑇 ′)

Where 𝑓 is the
parametric encoding

2 3. 𝐽[𝐶, 𝑇] Soundness of param
 4. ∀𝑇∀𝐶(𝐽[𝐶, 𝑇] → ∃𝑋𝑅[𝑋, 𝐶, 𝑇]) Premise

3, 4 5. ∃𝑋𝑅[𝑋, 𝐶, 𝑇]
5 6. Fresh 𝑋* s.t. 𝑅[𝑋*, 𝐶, 𝑇]

 7. 𝑅′ = 𝑅[𝑇/𝑓(𝑇)] Definition of 𝑅′

2, 6, 7 8. 𝑅′[𝑋*, 𝐶, 𝑇 ′]

1, 8 9. ∀𝑇 ′∀𝐶∃𝑋𝑅′[𝑋, 𝐶, 𝑇 ′]

Since 𝐶, 𝑇 ′ were
arbitrary

Figure 5: Proof of Coverage Condition Satisfaction

The symbolic simulation invariants together with the coverage condition are sufficient
premises for our proof of the output checking procedure to hold.

However, this approach also destroys the partitioned structure of the partitioned indexing
relations.

25

4.2.1.1. Equivalence to Indexing Relation Restriction

Figure 6: Illustration of Indexing Relation and Parameterisation

We see that the indexing cases that are included in the strong preimage operation on the
antecedent are the same whether we are parameterising the indexing relation or restricting
the indexing relation to the environmental constraint. Suppose we are taking the strong
preimage of target variable 𝑎, we have that 𝑎𝑅 = (𝑓𝑎)𝑅′

. In either case, we only consider
the indexing cases that at least map to one target variable assignment that satisfies 𝐽 ∧
𝑎, and doesn’t index any cases that satisfy 𝐽 ∧ 𝑎. Analysis is symmetric for taking the
strong preimage of the negation of a target variable.

Furthermore,

dom(𝑅′) = {𝑋, 𝐶 | ∃𝑇 ′𝑅′[𝑋, 𝐶, 𝑇 ′]} = {𝑋, 𝐶 | ∃𝑇 (𝑃 [𝐶, 𝑇] ∧ 𝑅[𝑋, 𝐶, 𝑇])} = 𝐽𝑅

Both of them are the set of cases that index into at least one case in 𝐽 . As such the
output checks will be the same for both methods.

This means that both methods are equivalent.

26

Since the indexing relation restriction is equivalent to the more efficient antecedent
conditioning, this parametric method is also equivalent to that. Given the better efficiency
of the method of conditioning the antecedent, that is a preferable method.

4.2.2. Parameterise Before Abstraction
While parameterising the indexing relation is not more effective than the restriction
methods, our second strategy of using param before abstraction is more likely to be more
effective.

Input: circuit, antecedent, input constraints, output constraints
1. Compute param on the input constraints
2. Viewing each parameterisation function as a circuit, bind the functions to the

inputs of the original circuit to form a larger parameterised circuit.
3. Compute an indexing relation on the larger circuit, possibly via the automatic

abstraction algorithm
4. Substitute each BDD variable in the unrestricted antecedent of the original circuit

with the corresponding function from the parametric encoding
5. Perform indexing transformations on the parameterised antecedent, and output

constraints
6. Perform symbolic simulation
7. Check whether the output constraint holds or a counterexample exists

Output: proven, disproven (with counterexample) or unproven

Figure 7: Model Checking with Parameterisation Before Abstraction

This approach will compute a new indexing relation that is not easily found as a modifi-
cation of the non-parameterised indexing relation.

Soundness is proven similarly to Section 4.2.1.

27

Chapter 5
Experiments and Evaluation

5.1. Content-Addressable Memory (CAM)
We illustrate the effectiveness of symbolic simulation with symbolic indexing on a CAM.

Figure 8: Content-Addressable Memory

The CAM stores 𝑁 entries, each of 𝐷 bits. It takes a query of 𝐷 bits on each clock cycle
and outputs on a hit whether the query matches any of its entries.

On each cycle our CAM will compare the query with each of the entries in parallel and
take a logical OR of all the comparisons to get the hit value. The specification of our

28

CAM compares each entry with the query in sequence, doing many binary ORs in series
to check for a hit.

Our property is that the specification and the circuit agree on the hit value.

5.1.1. Results
We prove the correctness of different sizes of the CAM with manual abstraction based on
[6], automatic abstraction and no abstraction. We measure the time taken for the different
steps of running rSTE as follows:

Timing Description

Abstraction Time Time taken to produce a partitioned indexing relation.
For manual indexing relations, this is the time taken to
construct the relevant BDDs for the indexing relation. For
automatic abstraction, this is the time taken to run the
automatic abstraction algorithm.

Not included for unabstracted tests.

Transformation
Time

Time taken to compute the domain and the strong preim-
age of each antecedent tuple. For these examples, the
efficient preimage algorithms for partitioned indexing rela-
tions are used.

Not included for unabstracted tests.

Evaluation Time Time taken to run the symbolic simulator with the trans-
formed antecedent.

Check Time Time taken to verify the output constraint is correct after
the simulation.

Table 3: Measured Times for rSTE Tests

29

Figure 9: Symbolic Simulation on CAM with Manual Indexing

With manual abstraction, the time taken to perform each step of the proof grows linearly
with the length of the data entries in the CAM, as is expected based of the indexing
relation constructed.

30

Figure 10: Symbolic Simulation on CAM with Automatic Abstraction

With automatic abstraction, we still see the linear growth in time taken to perform the
proof, but the time taken is longer compared to manual abstraction. With the manually
constructed indexing relation, the rate of increase in evaluation time is the fastest. With
automatic abstraction, this is the abstraction time.

31

Figure 11: Symbolic Simulation on CAM with No Abstraction

Comparatively, when we run the symbolic simulation without abstraction, the time taken
to perform the proof grows exponentially with the length of the data entries in the CAM
and quickly becomes intractable.

5.2. Multi-Input Maximum Circuit
We also showcase the method on a maximum circuit. The maximum circuit takes 𝑁
inputs, each of length 𝐷, and every clock cycle, will output the maximum of all the
inputs, treating them as binary integers. This is implemented as a binary tree of 2-input
maximum operations between tree nodes, with the output at the root.

32

Figure 12: Maximum Circuit

Rather than using a specification that does the same computation in a different way, this
circuit has a natural relational specification that consists of two properties:
• Contained Property: The output is one of the input values
• Bounded Property: The output is at least as large as all the input values

33

Figure 13: Maximum Circuit Specification Circuit

5.2.1. Manual Indexing Relation
We construct a partitioned indexing relation that exponentially reduces the number of
BDD variables needed for symbolic simulation.

We have the following indexing variables:

Variables Type Purpose

𝒕 Vector of 𝐷 Boolean
variables

𝒕 represents the target output of the maximum circuit.

All cases that lead to the circuit producing 𝑥 will be
covered by some indexing cases where 𝒕 = 𝑥

𝒅 Matrix of size 𝑁
by log2 𝐷 + 1 Boolean
variables

𝒅𝑖 : 𝒅𝑖[0], …, 𝒅𝑖[log2 𝐷] encodes an integer that repre-
sents the number of most significant bits of the 𝑖th
input will be the same as the corresponding bits of 𝒕
before the critical bit of 𝑖 which will be low in 𝐢𝐧𝐬[𝑖]
but high in 𝒕

Table 4: Variables for Max Circuit Manual Indexing

34

These form conjuncts that we merge together to form the indexing relation:

Conjunct Purpose

⋁
𝑛−1

𝑖=0
(𝒅𝑖 = 𝐷)

Ensures that at least one entry will com-
pletely match the target output

∀𝑖∀𝑗 : (𝐷 − 𝑗 ≤ 𝒅𝑖) ⇒

(𝐢𝐧𝐬[𝑖][𝑗] = 𝒕[𝑗])

Ensures the most significant bits of each
input match with the target output

∀𝑖∀𝑗 : (𝐷 − 1 − 𝑗 = 𝒅𝑖) ⇒

(𝐢𝐧𝐬[𝑖][𝑗] = 0) ∧ (𝑡[𝑗] = 1)

Ensures the critical bit for each entry is
high in the target output but low in the
input

Table 5: Conjuncts for Max Circuit Manual Indexing

where 0 ≤ 𝑖 < 𝑁 , 0 ≤ 𝑗 < 𝐷.

Abstraction is achieved by the lack of restriction of the bits less significant than the
critical bits in each input since their value will not affect the output.

This takes 𝐷 + 𝑁 log2 𝐷 + 𝑁 variables, exponentially less than the 𝑁𝐷 variables used
for symbolic simulation without symbolic indexing.

35

5.2.2. Results

Figure 14: Symbolic Simulation of Max Circuit with Manual Indexing

With manual indexing, the the abstraction time mostly grows linearly with size of the
circuit. However, the transformation time grows super-linearly, probably due to the larger
BDDs that must be manipulated, particularly the domain of the abstraction relation.

The evaluation time grows super-linearly at an even faster rate. This seems to be because,
compared to the CAM, the maximum circuit has its entire comparison tree take 𝑂(𝐷)
input and 𝑂(𝐷) output rather than comparing single wires.

36

Figure 15: Symbolic Simulation of Max Circuit without Abstraction

Super-linear scaling is also seen in the no abstraction case, but the rate in increase is
much faster, resulting in the proof quickly becoming infeasible.

Unfortunately we are not able to prove either of the max circuit properties with the
automatic abstraction algorithm. This is likely due to over-abstraction. Unlike for the
CAM, here there are no obvious candidates for symbolic constants, which was our primary
defense against over-abstraction.

37

Chapter 6
Conclusion

We have reinvented the theory of symbolic indexing transformations for rSTE and imple-
mented it in Jasper. We have shown that the method can be more effective than running
symbolic simulation without symbolic indexing.

6.1. Future Work
Automatic abstraction is critical to be able to apply rSTE widely. The speed of the auto-
matic abstraction algorithm developed in the companion project is currently a limiting
factor in efficient rSTE proofs. Furthermore, over-abstraction has proven to be a problem.
Thus, work on counterexample guided abstraction refinement [17] of the automatically
discovered indexing relations such as in [18] would make rSTE much more practical.

While we described methods to deal with environmental constraints, we have yet to
implement or evaluate these methods. This would be a good area of further work.

STE and rSTE work on the level of individual bits which could limit the level of abstrac-
tion that can be achieved. Existing work has been done to extend STE to work on the level
of data values [19], [20]. An area of further work is to extend indexing transformations
and automatic abstraction to work on these variants.

38

Bibliography

[1] C.-j. Seger and R. Bryant, “Formal Verification by Symbolic Evaluation of Partially-
Ordered Trajectories,” Formal Methods in System Design, vol. 6, p. , 1994, doi:
10.1007/BF01383966.

[2] S. Hazelhurst and C.-J. H. Seger, “Symbolic trajectory evaluation,” in Formal Hard-
ware Verification: Methods and Systems in Comparison, T. Kropf, Ed., Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1997, pp. 3–78. doi: 10.1007/3-540-63475-4_1.

[3] T. Melham, “Symbolic Trajectory Evaluation,” in Handbook of Model Checking,
E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds., Cham: Springer
International Publishing, 2018, pp. 831–870. doi: 10.1007/978-3-319-10575-8_25.

[4] R. E. Bryant, “Symbolic simulation—techniques and applications,” in Proceedings
of the 27th ACM/IEEE Design Automation Conference, in DAC '90. Orlando,
Florida, USA: Association for Computing Machinery, 1991, pp. 517–521. doi:
10.1145/123186.128296.

[5] M. Pandey and R. Bryant, “Formal verification of memory arrays using symbolic
trajectory evaluation,” in Proceedings. International Workshop on Memory Technol-
ogy, Design and Testing (Cat. NO.97TB100159), 1997, pp. 42–49. doi: 10.1109/
MTDT.1997.619393.

[6] M. Pandey, R. Raimi, R. Bryant, and M. Abadir, “Formal Verification Of Content
Addressable Memories Using Symbolic Trajectory Evaluation,” in Proceedings
of the 34th Design Automation Conference, 1997, pp. 167–172. doi: 10.1109/
DAC.1997.597138.

[7] R. E. Bryant and C.-J. H. Seger, “Formal Verification of Digital Circuits Using
Symbolic Ternary System Models,” in Proceedings of the 2nd International Workshop
on Computer Aided Verification, in CAV '90. Berlin, Heidelberg: Springer-Verlag,
1990, pp. 33–43.

[8] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision
diagrams,” ACM Comput. Surv., vol. 24, no. 3, pp. 293–318, Sep. 1992, doi:
10.1145/136035.136043.

39

https://doi.org/10.1007/BF01383966
https://doi.org/10.1007/3-540-63475-4_1
https://doi.org/10.1007/978-3-319-10575-8_25
https://doi.org/10.1145/123186.128296
https://doi.org/10.1109/MTDT.1997.619393
https://doi.org/10.1109/MTDT.1997.619393
https://doi.org/10.1109/DAC.1997.597138
https://doi.org/10.1109/DAC.1997.597138
https://doi.org/10.1145/136035.136043

[9] T. F. Melham and R. B. Jones, “Abstraction by Symbolic Indexing Transforma-
tions,” in Proceedings of the 4th International Conference on Formal Methods in
Computer-Aided Design, in FMCAD '02. Berlin, Heidelberg: Springer-Verlag, 2002,
pp. 1–18.

[10] S. Adams, M. Bjork, T. Melham, and C.-J. Seger, “Automatic Abstraction in
Symbolic Trajectory Evaluation,” in Formal Methods in Computer Aided Design
(FMCAD'07), 2007, pp. 127–135. doi: 10.1109/FAMCAD.2007.27.

[11] C.-J. Seger et al., “An industrially effective environment for formal hardware verifi-
cation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 9, pp. 1381–1405, 2005, doi: 10.1109/TCAD.2005.850814.

[12] C.-J. H. Seger, “VOSS - A Formal Hardware Verification System User”s Guide,”
1993. [Online]. Available: https://api.semanticscholar.org/CorpusID:61246413

[13] J. O'Leary, R. Kaivola, and T. Melham, “Relational STE and theorem proving
for formal verification of industrial circuit designs,” in 2013 Formal Methods in
Computer-Aided Design, 2013, pp. 97–104. doi: 10.1109/FMCAD.2013.6679397.

[14] “Jasper RTL Apps.” [Online]. Available: https://www.cadence.com/
en_US/home/tools/system-design-and-verification/formal-and-static-verification/
jasper-verification-platform.html

[15] “Voss II.” [Online]. Available: https://github.com/TeamVoss/VossII

[16] M. D. Aagaard, R. B. Jones, and C.-J. H. Serger, “Formal verification using
parametric representations of Boolean constraints,” in Proceedings of the 36th
Annual ACM/IEEE Design Automation Conference, in DAC '99. New Orleans,
Louisiana, USA: Association for Computing Machinery, 1999, pp. 402–407. doi:
10.1145/309847.309968.

[17] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-Guided
Abstraction Refinement ,” in Computer Aided Verification, E. A. Emerson and A.
P. Sistla, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 154–169.

[18] S. E. Adams, “Abstraction discovery and refinement for model checking by symbolic
trajectory evaluation,” 2014. [Online]. Available: https://www.cs.ox.ac.uk/people/
tom.melham/phd/Adams-2013-ADR.pdf

40

https://doi.org/10.1109/FAMCAD.2007.27
https://doi.org/10.1109/TCAD.2005.850814
https://api.semanticscholar.org/CorpusID:61246413
https://doi.org/10.1109/FMCAD.2013.6679397
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://github.com/TeamVoss/VossII
https://doi.org/10.1145/309847.309968
https://www.cs.ox.ac.uk/people/tom.melham/phd/Adams-2013-ADR.pdf
https://www.cs.ox.ac.uk/people/tom.melham/phd/Adams-2013-ADR.pdf

[19] S. Chakraborty et al., “Word-level Symbolic Trajectory Evaluation.” [Online]. Avail-
able: https://arxiv.org/abs/1505.07916

[20] D. Li, O. Ait-Mohamed, and S. Abed, “Towards First-Order Symbolic Trajectory
Evaluation,” in 37th International Symposium on Multiple-Valued Logic (ISMVL'07),
2007, p. 53. doi: 10.1109/ISMVL.2007.57.

41

https://arxiv.org/abs/1505.07916
https://doi.org/10.1109/ISMVL.2007.57

	Abstract
	Introduction
	Starting Point for this Research
	Contributions
	Relation to Companion Project

	Theory for Relational STE
	Design Under Test, Specifications and Relational Properties
	Relational Properties with SVA
	Output Constraints
	Antecedents

	Indexing Relations and Transformations
	Preimage Operations
	Image Operation
	Relationship between Preimages
	Indexing Coverage Condition
	Constructing Indexing Relations

	rSTE Model Checking Procedure
	Simplified Checking for Unrestricted Output Constraints
	Soundness of Model Checking Procedure
	Symbolic Simulation Invariants
	Output Constraint Checking
	Alternative Checking by Reversing the Indexing
	Counterexample Analysis

	Partitioned Abstraction Relations
	Efficient Weak Preimage Computation
	Efficient Strong Preimage Computation

	Verification Under Environmental Constraints
	Indexing Relation Restriction
	Preserve Partitioned Indexing Relation by Conditioning Antecedent

	Parametric Encoding
	Parametric Encoding of Indexing Relations
	Equivalence to Indexing Relation Restriction

	Parameterise Before Abstraction

	Experiments and Evaluation
	Content-Addressable Memory (CAM)
	Results

	Multi-Input Maximum Circuit
	Manual Indexing Relation
	Results

	Conclusion
	Future Work

	Bibliography

#import "@preview/derive-it:0.1.2": *
#import "@preview/wordometer:0.1.4": word-count, total-words
#pdf.embed("report_1075201.typ")

// Extra Content
#let show_extra = false
#let extra(x) = {
 if show_extra {
 [#x <no_wc>]
 } else {
 []
 }
}

// Page Setup
#set page(
 margin: (
 x: 3cm,
 y: 3cm,
),
)
#set text(
 font: "New Computer Modern",
 size: 11pt,
)

// Title Page
#let author = "1075201"
#let title = "Indexing Transformations for
Relational Symbolic Trajectory Evaluation"

#align(center)[
 #block(text(weight: "bold", 1.75em, title))
 #box(height: 20%)

 #text(weight: 570, 1.6em, author)

 #box(height: 50%)
 #text(weight: 500, 1.1em, "A dissertation submitted for the degree of \n")
 #text(weight: 500, 1.1em, style: "italic", "Computer Science (Part B)")

 #v(1em, weak: true)
 #text(weight: 500, 1.1em, "Trinity 2025")
 #v(3em, weak: true)

 #text(weight: 500, 1.1em, [Word Count: #total-words])
]

#pagebreak()

// Abstract
#set par(
 justify: true,
 leading: 1em,
 spacing: 2.0em,
)
#set page(numbering: "1")
#show heading.where(level: 1): set block(below: 2em)
#show heading.where(level: 1): set text(size: 20pt)
#show heading.where(level: 2): set block(below: 1em)
#show heading.where(level: 3): set block(below: 1em)

#counter(page).update(1)

= Abstract
Symbolic Trajectory Evaluation (STE) is a symbolic model checking method for hardware verification. It makes verification more tractable by symbolically simulating families of related initial states over an abstracted circuit, a technique called symbolic indexing. Relational STE (rSTE) is a significant reformulation of the original STE logic and method to allow for arbitrary relational properties to be verified.

This project reinvents the theory of symbolic indexing transformations, previously limited to STE, to allow rSTE to exploit symbolic indexing abstractions systematically. We formulate a new theory for efficient indexing transformations on a subclass of abstractions called partitioned abstractions in rSTE, going beyond the original theory for STE to handle so-called symbolic constants. We also discuss methods for dealing with environmental constraints, a significant weakness of the original STE method.

These procedures are implemented in the industry standard verification tool Jasper and our experiments show them to be more efficient on uniform circuits compared to vanilla symbolic simulation without symbolic indexing.

#pagebreak()

// Content Page

#outline(indent: auto)

#pagebreak()

// Definitions
#let dom = "dom"
#let True = "True"
#let False = "False"
#let hexpr = "hexpr"
#let lexpr = "lexpr"
#let ent = $tack.double$
#let nent = $tack.double.not$

// Start of Report
#show: word-count.with(exclude: ("table", "outline", "bibliography", "ded-nat-boxed", <no-wc>))

#set heading(numbering: "1.")
#show heading.where(level: 1): it => {
 if it.body != [Bibliography] {
 pagebreak(weak: true)
 block(width: 100%)[
 \
 \
 Chapter #counter(heading).display("1")
 \
 #it.body]
 }
 else {
 it.body
 }
}

= Introduction
Formal verification is the process of proving that a system satisfies a given specification or set of properties.

Symbolic Trajectory Evaluation (STE) @SymbolicEvaluationOfPartiallyOrderedTrajectories@STEFormalHardwareVerification@modelCheckingHandbook is a symbolic model checking technique @symbolicModelChecking for perform hardware formal verification on circuits. It allows the verification of functional properties while incorporating circuit abstraction by grouping families of related input cases together and simulating them symbolically. STE has had particular success in the verification of memory circuits @steMemoryArrays @camIndexing, which have highly regular structures that can be exploited by abstraction.

The core idea of STE is performing circuit simulation over a 3-valued domain of "true", "false" and "don't know" (X) that is ordered by information content @symbolicTernarySystemModels. On any concrete set of inputs over the 3-valued domain, a simulator can compute the output of the circuit, processing each logical gate based on a modified truth table to account for the X value, such as in @three_value_truth_tables.

#figure(caption: "3-valued Excitation Function for AND Gate and D-Latch")[
 #set table(
 stroke: (x, y) => {
 if y == 0 {
 (bottom: 0.7pt + black)
 }
 if x == 0 {
 (right: 0.7pt + black)
 }
 },
 align: (x, y) => (
 if x > 0 { center } else { left }
),
)

 #grid(
 columns: 2,
 gutter: 20pt,
 [
 #table(
 columns: 4,
 inset: 10pt,
 align: horizon,
 table.header(
 [AND],
 [0],
 [1],
 [X],
),

 [0], [0], [0], [0],
 [1], [0], [1], [X],
 [X], [0], [X], [X],
)],
 [

 #table(
 columns: 4,
 inset: 10pt,
 align: horizon,
 table.header(
 [D-Latch],
 [0],
 [1],
 [X],
),

 [0], [0], [0], [0],
 [1], [1], [1], [1],
 [X], [X], [X], [X],
)],
)
] <three_value_truth_tables>

We can use this 3-valued simulation to observe behaviours of circuits on groups of related inputs. For example, by simulating an AND gate on the inputs 0 and X, we can observe that the output is 0 and thus conclude that $0 and 0 = 1 and 0 = 0$. This has allowed us to merge the analysis of two cases that we would have to simulate separately in a conventional 2-valued Boolean simulation.

Furthermore, rather than doing simulation of only one concrete instance of 3-valued inputs at once, we do multiple 3-valued simulations at once via symbolic simulation. In the case of basic Boolean simulation, we could start by assigning a variable to each input and then propagate these values through the circuit, building up a propositional formula at each node that represents the truth value of the circuit node.

For our 3-valued simulation, we do this symbolic simulation using a pair of Boolean formulae over "indexing variables" on each circuit node. For each node, these are called the "high" and "low" expressions and have the following semantics.#footnote([This implementation strategy is the modern one implemented in Jasper. The legacy literature@modelCheckingHandbook had different names and interpretations for the two expressions.])

#figure(caption: "Semantics of High and Low Expressions")[
 #set table(
 stroke: (x, y) => {
 if y == 0 {
 (bottom: 0.7pt + black)
 }
 if x == 0 {
 (right: 0.7pt + black)
 }
 },
 align: (x, y) => (
 if x > 0 { center } else { left }
),
)

 #table(
 columns: (auto, auto, auto),
 inset: 10pt,
 align: horizon,
 [], [$H_s = 0$], [$H_s = 1$],
 [$L_s = 0$], [s is X], [s is 1],
 [$L_s = 1$], [s is 0], [s is top],
)]

where top represents inconsistent information.

The symbolic simulator propagates these high and low expressions through the circuit. For example, for an AND gate, on inputs with expressions (h_A, l_A) and (h_B, l_B), the output produced would be $(h_A and h_B, l_A or l_B)$.

Symbolic simulators generally represent these expressions as reduced, ordered binary decision diagrams (BDDs) @bddSurvey that allow for efficient manipulation and thus simulation of the circuit. We term these pairs of BDDs as dual-rail BDDs.

As an example, consider verification of a 3-input AND gate. We would like to prove that $o = a and b and c$ for inputs a, b, c. To use STE to verify the AND gate, observe that rather than simulating all 2^3 different Boolean input assignments to the circuit, it is sufficient to simulate 4 cases under the 3-valued domain:
$
 p and q &: a = b = c = 1 \
 overline(p) and overline(q)&: a = 0, b = c = X \
 overline(p) and q &: b = 0, a = c = X \
 p and overline(q) &: c = 0, a = b = X
$

We can enumerate these cases symbolically by assigning them propositional formulae in terms of indexing variables p and q. Using propositional formulae to do case-splitting this way is termed as symbolic indexing.

To apply this symbolic indexing scheme, we will set the dual rail inputs as follows:
$
 h_a:= p and q, l_a := overline(p) and overline(q) \
 h_b:= p and q, l_b := overline(p) and q \
 h_c:= p and q, l_c := p and overline(q)
$

We then run the symbolic simulator, getting output $(h_o, l_o) = (p and q, overline(p) or overline(q))$. We can then conclude that the AND gate outputs true if and only if $a = b = c = 1$ and false otherwise, which is the desired property.

== Starting Point for this Research

Legacy literature on STE @SymbolicEvaluationOfPartiallyOrderedTrajectories provided a theory of writing stimuli (antecedent) to combinational circuits using a linear temporal logic, specifying an intended functional output (consequent) and then using the 3-valued symbolic simulator to verify that the circuit would satisfy the consequent under the given antecedent. But, it was difficult in this setting to write stimuli in a manner that covered all relevant input cases and to interpret the results of the symbolic simulation to check properties. The theory of indexing relation transformations @indexingTransformations was therefore developed to simplify usage of STE.

To use STE with indexing transformations, we first set up an antecedent and consequent without any abstraction from Xs. We then apply a transformation on the antecedent and consequent based on an indexing relation that mapped groups of target assignments to corresponding indexing variable assignments. We then check that the transformed antecedent leads to the transformed consequent holding on the circuit. Assuming a technical coverage condition held for the indexing relation, this would imply that the original property held on the circuit. Further work was later done to automate the process of generating effective indexing relations via an automatic abstraction algorithm @automaticAbstraction.

This theory and its implementation had promise, but there were two impediments to it being used across the semiconductor industry. First, the tools that implemented these methods were proprietary to Intel @forte, although academic prototypes also existed @voss. Second, the abstraction method proposed in these papers did not incorporate environmental constraints, which are virtually essential for real-world use.

Since then, a variant of STE known as relational STE (rSTE) @rSTE that allows for specifications with arbitrary relational properties has been described, but not formalized. Furthermore, a dual-rail BDD symbolic simulator has been developed within the industry standard formal verification tool Jasper @Jasper.

== Contributions
This project reinvents the theory of symbolic indexing transformations for rSTE and brings it to the modern day in Jasper.
- We provide a procedure for incorporating symbolic indexing into the rSTE workflow via indexing transformations. We provide proofs of soundness for the procedure of indexing transformations and interpretations of the simulation outputs to derive proofs and counterexamples.

- We provide new proofs and formal descriptions for efficient preimage computations on a subclass of indexing relations known as partitioned indexing relations that extends the existing technique by incorporates symbolic constants mentioned in @automaticAbstraction.

- We formulate theory for dealing with environmental constraints in rSTE using ideas from @indexingTransformations but updated to consider partitioned indexing relations with symbolic constants.

- We implement the theoretical procedures to perform rSTE with symbolic indexing in Jasper, including procedures for efficient indexing transformations of partitioned indexing relations, running of symbolic simulator with transformed antecedent, and checking of transformed output.

- We evaluate the efficiency of rSTE on two scalable example circuits: a Content-Addressable Memory (CAM) and a multi-input maximum circuit. For each of these, we evaluate the technique with the use of a manually constructed indexing relation and an automatically generated one when compared to symbolic simulation without symbolic indexing. We used a manual indexing of the CAM based on @camIndexing and crafted an original one for the maximum circuit.

== Relation to Companion Project
While this project focuses on the process of using indexing relations to perform rSTE with symbolic indexing, the companion project focuses on the automatic generation of indexing relations for rSTE. The two projects are complementary and can be used together to perform symbolically indexed rSTE with minimal user input.

= Theory for Relational STE
== Design Under Test, Specifications and Relational Properties
We make use of Jasper to process a circuit design under test (DUT) written in SystemVerilog at Register Transfer Level (RTL).

=== Relational Properties with SVA
Traditionally STE properties were functional properties that were written in a linear temporal logic that allowed you to assert that specific signals would be high or low depending on the specific stimulus on the input of the circuit.

However, rSTE allows for more general properties through the use of a bound specification circuit that implements properties written as SystemVerilog Assertions (SVA). When the DUT is elaborated, the specification circuit will be instantiated together with it. The specification takes as input, the inputs to the DUT, along with internal/output signals from the DUT that the are relevant to the properties checked.

The key to checking relational properties is the insight that SVA properties can be expressed as a circuit that produces a signal that is high if the property holds in that clock cycle and low otherwise. This is done as part of Jasper's internal symbolic simulation model construction. We call the signal that represents the property being held as the "property wire".

When using the symbolic simulator without symbolic indexing, we will do a Boolean symbolic simulation and check that the property wire is high under any assignment of inputs.

=== Output Constraints <output_constraints>
To incorporate symbolic indexing via indexing transformations, we build an additional layer of output constraints on top of the SVA properties that we want to check. These output constraints will mirror the LTL properties from STE but are written in a 5-tuple form as implemented in VOSSII @vossII:

#align(center)[
 `Output Constraint: [(signal, tickStart, tickEnd, highExpr, lowExpr)]`
]

Each output constraint consists of two parts:
+ Positive output constraint: When `highExpr` is true, the signal should be high.
+ Negative output constraint: When `lowExpr` is true, the signal should be low.

If neither are true, then we don't assert anything about the signal. `highExpr` and `lowExpr` are called the guards of the output constraint. The `tickStart` and `tickEnd` form the range of clock cycles that the output constraint should hold for.

Before doing the symbolic indexing, for each SVA property we wish to check, we will build a corresponding output constraint of the form:

#align(center)[
 `Output Constraint: [(propertyWire, tickStart, tickEnd, True, False)]`
]

This asserts that the SVA property should always hold. Such output constraints are termed "unrestricted output constraints".

=== Antecedents <antecedents>
The antecedent (stimulus) of the circuit will also be written in the 5-tuple form. The tuple `(signal, tickStart, tickEnd, highExpr, lowExpr)` in the stimulus, means that the signal is high when `highExpr` is true, low when `lowExpr` is true and X or inconsistent otherwise.

#extra([
 When we do symbolic simulation without symbolic indexing, for each input signal s and clock cycle t that we wish to provide a unique stimulus to s for, we will include a tuple `(s, t, t, z_(s,t), NOT z_(s,t))` in the antecedent. This tuple ensures a new unique BDD variable `z_(s, t)` is created, ensuring that we cover all possible input cases. We would then run the symbolic simulator with this antecedent and check that high expression of the property wire is true for all relevant clock cycles.
])

== Indexing Relations and Transformations
Indexing relations are used to symbolic represent input case-splitting to perform symbolic indexing and are the basis of the indexing transformation procedure.

Indexing relations $R[X, C, T]$ are Boolean formulae over propositional variables where
- X are the indexing propositional variables that index cases
- T are the target propositional variables that are indexed. These variables correspond to input wires in the circuit and assignments to them correspond to concrete inputs.
- C are the symbolic constants that correspond to input wires that should not be indexed.

The indexing relation $R[X, C, T]$ is interpreted as:
- For each X, C, we cover the cases T, C where $exists T R[X, C, T]$.

#extra([
 Since the indexing relation can be a many to many relation, we can have multiple T, C cases covered by a single X, C case indexing and vice versa.
])

Note that the indexing relation $R'[(X, C'), emptyset, (C, T)] = R[X, C, T] and and.big (C = C')$ that doesn't use symbolic constants is equivalent to $R[X, C, T]$ when doing indexing transformations. /* and its associated operations (@preimage_operations).*/

Symbolic constants don't improve the expressive power of indexing relations, but rather simplify them to achieve higher efficiency. When using the automatic abstraction algorithm in the companion paper, symbolic constants also provide a crude way to prevent over-abstraction since the algorithm will not include them in abstraction.

=== Preimage Operations <preimage_operations>
Suppose
- $P[C, T]$ represents some set of input cases #extra([e.g. (C, T) is in the set iff P[C, T] is true)])
- $R[X, C, T]$ is an indexing relation

The *weak preimage* of P under R,
$ P_R [X, C] = exists T (R[X, C, T] and P[C, T]) $
is the set of (X, C) that cover at least one (T, C) case in P

The *strong preimage* of P under R,
$
 P^R [X, C] = P_R and not exists T (R[X, C, T] and not P[C, T])
$ is the set of (X, C) that cover at least one case in P and don't cover any cases not in P.

=== Image Operation
The image of $H[X, C]$
$ im(H, R)[C, T] = exists X (R[X, C, T] and H[X, C]) $

is the set of cases indexed by $H[X, C]$ under R.

#extra([
 While this is not directly used for finding proofs, it is useful for extracting counterexamples for disproven properties.
])

=== Relationship between Preimages
For any fixed R and any given P and (X, C) one of the following holds:
- X, C indexes cases only in P
- X, C indexes cases only in $not P$
- X, C indexes cases in both P and $not P$
- X, C indexes cases in neither P nor $not P$

Any X, C that fall into the 4th category must correspond to empty indexing cases, i.e. don't map onto any (C, T)#extra([at all]). This is independent of P, thus, we term the union of the first 3 cases as the domain of R.

$ dom(R)[X, C] = exists T (R[X, C, T]) $

Observe that
- The weak preimage is the set of X, C that fall into the 1st and 3rd categories.
- The strong preimage is the set of X, C that fall into the 1st category.

The following are equivalent definitions of the strong preimage operation:
$
 P^R [X, C] &= dom(R) and overline(overline(P)_R) \
 &= dom(R) and (forall T (R[X, C, T] -> P[C, T]))
$

=== Indexing Coverage Condition
For each output constraint /*(@output_constraints)*/ i that we wish to check, we let the guards be P_i and Q_i. The total space of inputs we need to check is then $B[C, T] = or.big_(i) (P_i or Q_i)$. In order for our abstraction to fully cover this space, we require that

$ forall T forall C (B[T, C] -> exists X (R[X, C, T])) $

This is the coverage condition, and it is required for the indexing transformation procedure to be sound.

#extra([
 Intuitively, the coverage condition states that each input assignment of target variables must be covered by some indexing case and thus considered by the model checker.
])

For unrestricted output constraints, we will have $P_i = True, Q = False$. In this case, $B[C, T] equiv True$ so the coverage condition takes the simpler form:

$ forall T forall C exists X (R[X, C, T]) $

=== Constructing Indexing Relations
To formulate an indexing relation, we will need to encode the case-splitting for the different input cases that elicit different outputs from the circuit. This is done manually for specific circuits in the examples of @CAM_example and @maxCircuit_example.

The companion project reinvents the automatic abstraction algorithm from @automaticAbstraction and implements it within Jasper. It produces an indexing relation that satisfies the coverage condition by construction.

== rSTE Model Checking Procedure <modelCheckingProcedure>
Suppose we are given a circuit, an indexing relation R, and an output constraint list `cout`. We will describe the procedure to prove that the output constraints hold.

We first construct unabstracted antecedents for each of the input variables and time steps

#align(center)[
 `antv = [(signal, t, t, s, not s)]`
]
where s is a bdd variable for the signal at time t.

We then apply the strong preimage operations on the high and low expressions of the antecedent tuples as follows:

#align(center)[
 `antv = [(s, t, t, s^R, (not s)^R)]`
]

Next we run the symbolic simulator with the transformed antecedent. This produces an evaluation sequence which will contain `highExpr` and `lowexpr` BDD expressions for when a signal at a certain time step is known to be high or low. #extra([If for a given assignment, neither of these expressions are true, then the signal is unknown.])

From this evaluation sequence, we can then check the output constraints. To check a output constraint of the form `(signal, tickStart, tickEnd, P, Q)` /*with guards $P[C, T]$ and $Q[C, T]$*/, we will transform the output constraint to
#align(center)[
 `(signal, tickStart, tickEnd, P_R, Q_R)`
]
where P_R and Q_R are the weak preimages of P and Q.

Then we analyse the `highexpr` and `lowexpr` BDD expressions from the evaluation sequence for the signal at each of the ticks in the tick range. Suppose that at a given tick t, for the property wire the high expression is $H[X, C]$ and the low expression is $L[X, C]$.

If $(P_R -> H)[X, C] equiv True$ and $(Q_R -> L)[X, C] equiv True$, then the output constraint is satisfied.

If $(P^R and L) != False$, we have disproven the positive output constraint. $im(P^R and L, R)$ symbolically represents the counterexamples found in terms of the original circuit inputs.

#extra([
 Specifically, $(P^R and L) != False$ means that some indexing cases that only index into P actually cause s to be low, this is a counterexample to the positive part of property so the positive part of property is disproven. We can inspect the cases indexed as $im(P^R and L, R)$ to get the actual counterexample in terms of the original circuit inputs.
])

Similarly, if $(Q^R and H) != False$, we have disproven the negative part of the property.

It is possible to not prove the property but also have no counterexamples. This occurs in cases where the antecedent does not provide enough information to prove or disprove the property. This is called a weak disagreement @modelCheckingHandbook and requires refining the indexing relation#extra([to obtain a proof/counterexample]).

== Simplified Checking for Unrestricted Output Constraints
A benefit of the unrestricted output constraint form is that the property guards are simple and thus have nice properties related to the indexing transformation.

To check the properties, we need to know the weak/strong preimage images of the guards. However, we have the following:
$
 True_R = True^R &= dom(R)[X, C]\
 False_R = False^R &= False
$

This means that we only need to take a single preimage operation to get the domain and use that for checking all the properties written in this form. In fact, computing the domain of a partitioned indexing relation (@partitionedIndexingRelation) is a simple operation that will be described later.

Furthermore, analysis of counterexamples is also simplified.
$ True^R and L = dom(R)[X, C] and L = L $

The 2nd equality is since we use strong preimages of target variables and their negations to transform the antecedents, so for any signal and time step, H and L don't include any cases that are not in the domain of R.#extra(
 [
 I.e. $ H or L -> dom(R) $

 This can be proven with induction over the circuit in a similar manner as the symbolic simulation invariants in @modelCheckingSoundness.
 So any time L is not false, we have found a counterexample.

 Specifically, any T, C in $im(L, R)$ is a counterexample.],
)

== Soundness of Model Checking Procedure <modelCheckingSoundness>
#extra([We prove that the model checking procedure described in @modelCheckingProcedure is sound.])

=== Symbolic Simulation Invariants
#let st = "st"
Let $st(C, T)$ be true iff the signal and time pair st is high under the untransformed antecedent under some assignment of the variables in C, T.

Consider the low and high expressions in any signal timestep pair. We have that

$
 H_st [X, C] and R[X, C, T] -> st(C, T) \
 L_st [X, C] and R[X, C, T] -> overline(st(C, T))
$

(For all X, C, T)

This can be proved via induction on the fan-in of st.

The main basecase is where s is an input variable corresponding to a certain time step, with `highexpr` P and `lowexpr` $overline(P)$. In this case, since we apply the strong preimage to the antecedents, we have that
$
 H = P^R = dom(R) and forall T (R[X, C, T] -> P[C, T])\
 L = overline(P)^R = dom(R) and forall T (R[X, C, T] -> overline(P[C, T]))
$

This directly gives us that for all X, C, T where $H[X, C] and R[X, C, T]$, we have $P[C, T]$. But $st(C, T) = P[C, T]$ since P will be a target variable / symbolic constant corresponding to the stimulus to the signal at the time step in the untransformed antecedent, so we are done. #footnote([Note that we don't use the domain part for this. It just serves to remove useless/inconsistent indexing cases, which is useful for counterexample analysis.]) The proof for $L[X, C] and R[X, C, T] -> overline(P[C, T])$ is analogous.

The subtle basecase is circuit nodes with state, such as a latch, before any stimulus from the antecedent reaches it. In this case, the high and low expressions will be false so the invariants hold trivially.

An inductive case example:

Suppose $s = s_1 and s_2$. Since the AND gate is combinational, we fix any time step. Let $(H_(s_1), L_(s_1))$ and $(H_(s_2), L_(s_2))$ be the high and low expressions for s_1 and s_2 respectively. The symbolic simulator will give us $(H_s, L_s) = (H_(s_1) and H_(s_2), L_(s_1) or L_(s_2))$. Under any fixed X, C, T, @inductiveCaseAnd gives us a proof that $H_s [X, C] and R[X, C, T] -> s(C, T)$ and $L_s [X, C] and R[X, C, T] -> not s(C, T)$.

Other circuit components can be proven in a similar manner.

#figure(caption: "Inductive Case on AND Gate")[

 #ded-nat-boxed(
 stcolor: black,
 premises-and-conclusion: false,
 arr: (
 ("", 0, $H_s [X, C]$, "Assume"),
 ("", 0, $R[X, C, T]$, "Assume"),
 ("1", 0, $H_(s_1)[X, C] and H_(s_2)[X, C]$, [$H_s = H_(s_1) and H_(s_2)$]),
 ("", 0, $H_(s_1)[X, C] and R[X, C, T] -> s_1(C, T)$, "Inductive Hypothesis"),
 ("", 0, $H_(s_2)[X, C] and R[X, C, T] -> s_2(C, T)$, "Inductive Hypothesis"),
 ("2, 3, 4", 0, s_1, ""),
 ("2, 3, 5", 0, s_2, ""),
 ("6, 7", 0, s, [$s = s_1 and s_2$]),
 ("1, 2, 8", 0, $H_s [X, C] and R[X, C, T] -> s(C, T)$, "Conclusion"),
),
)

 #ded-nat-boxed(
 stcolor: black,
 premises-and-conclusion: false,
 arr: (
 ("", 0, $L_s [X, C]$, "Assume"),
 ("", 0, $R[X, C, T]$, "Assume"),
 ("1", 0, $L_(s_1)[X, C] or L_(s_2)[X, C]$, [$L_s = L_(s_1) or L_(s_2)$]),
 ("", 0, $L_(s_1)[X, C] and R[X, C, T] -> not s_1(C, T)$, "Inductive Hypothesis"),
 ("", 1, $L_(s_1)[X, C]$, "Assume"),
 ("2, 4, 5", 1, $not s_1(C, T)$, ""),
 ("6", 1, $not s$, $s = s_1 and s_2$),
 ("", 0, $L_(s_2)[X, C] and R[X, C, T] -> not s_2(C, T)$, "Inductive Hypothesis"),
 ("", 1, $L_(s_2)[X, C]$, "Assume"),
 ("2, 8, 9", 1, $not s_2(C, T)$, ""),
 ("10", 1, $not s$, ""),
 ("3, 5-7, 9-11", 0, $not s$, ""),
 ("1, 2, 12", 0, $L_s [X, C] and R[X, C, T] -> not s(C, T)$, "Conclusion"),
),
)
] <inductiveCaseAnd>

=== Output Constraint Checking
Positive output constraints are of the form:
$ forall C forall T (P[C, T] -> s(C, T)) $

If $P_R [X, C] -> H[X, C] equiv True$ and the coverage condition $forall T forall C (B[C, T] -> exists X (R[X, C, T]))$ holds, then we know the output constraint will hold as shown in @positiveOutputConstraintProof.

#figure(caption: "Proof of Positive Output Constraint Check")[
 #ded-nat-boxed(
 stcolor: black,
 premises-and-conclusion: false,
 arr: (
 ("", 0, [Fresh X, C, T], ""),
 ("", 0, $P[C, T]$, "Assume"),
 ("", 0, $R[X, C, T]$, "Assume"),
 ("2, 3", 0, $P[C, T] and R[X, C, T]$, ""),
 ("4", 0, $exists T (P[C, T] and R[X, C, T])$, ""),
 ("5", 0, $P_R [X, C]$, [Definition of P_R]),
 (
 "1, 6",
 0,
 $forall X, C, T space (P[C, T] and R[X, C, T] -> P_R [X, C])$,
 [\ Since X, C, T were\ arbitrary. Lemma],
),
),
)

 #ded-nat-boxed(
 stcolor: black,
 premises-and-conclusion: false,
 arr: (
 ("", 0, [Fresh C, T], ""),
 ("", 0, $forall X (P_R [X, C] -> H[X, C])$, "Premise"),
 ("", 0, $B[C, T] -> exists X (R[X, C, T])$, "Premise"),
 ("", 0, $P[C, T]$, "Assume"),
 ("", 0, $forall X, C, T space (P[C, T] and R[X, C, T] -> P_R [X, C])$, [Lemma above]),
 ("4", 0, $B[C, T]$, [Definition of $B[C, T]$]),
 ("3, 6", 0, [Fresh $X*$ s.t. $R[X*, C, T]$], []),
 ("4, 5, 7", 0, [$P_R [X*, C]$], ""),
 ("2, 8", 0, $H[X*, C]$, ""),
 ("9", 0, $s(C, T)$, [Symbolic Simulation \ Invariants]),
 ("4, 10", 0, $P[C, T] -> s(C, T)$, ""),
 ("1, 11", 0, $forall C forall T (P[T, C] -> s(C, T))$, [Since C, T were\ arbitrary]),
),
)

] <positiveOutputConstraintProof>

We can prove the check for negative output constraints of the form
$ forall C forall T (P[C, T] -> not s(C, T)) $
in a similar manner.

=== Alternative Checking by Reversing the Indexing <alternativeChecking>
Another way to do the check is to take the image of $H[X, C]$ under the indexing relation, $im(H, R)[C,T]$. This will symbolically represent all the cases for which we know the property will hold.

$
 C, T in im(H, R) &=> exists X (H[X, C] and R[X, C, T]) \
 &=> H[X*, C] and R[X*, C, T] "for some" X* \
 &=> s(C, T) "by symbolic simulation invariant"
$

We can then check that $P -> im(H, R) equiv True$. If so then the property is true. On some circuits and indexing relations, this method can avoid weak disagreements compared to the preimage method. This is particularly true if some cases in P are indexed by multiple X, C.Tf the number of indexing variables is typically much less than the number of target variables, so this method can result in large BDDs that may be infeasible to compute.

=== Counterexample Analysis
Suppose that $P^R and L != False$. Let (X, C) be such that $(P^R and L)[X, C]$ is true. We show that (X, C) is a counterexample to the property $forall C forall T (P[C, T] -> s(C, T))$.

#figure(caption: "Proof for Positive Property Counterexample Check")[
 #ded-nat-boxed(
 stcolor: black,
 premises-and-conclusion: false,
 arr: (
 ("", 0, $P^R [X, C] and L[X, C]$, "Premise"),
 ("1", 0, $dom(R)[X, C] and forall T (R[X, C, T] -> P[C, T])$, [Definition of P^R]),
 ("2", 0, $exists T (R[X, C, T])$, [Definition of $dom(R)$]),
 ("3", 0, [Fresh $T*$ s.t. $R[X, C, T*]$], []),
 ("2, 4", 0, $P[C, T*]$, ""),
 ("", 0, $L[X, C] and R[X, C, T*] -> not s(C, T*)$, [Symbolic Simulation \ Invariants]),
 ("1, 4, 6", 0, $not s(C, T*)$, ""),
 ("5, 7", 0, $P[C, T*] -> not s(C, T*)$, ""),
 ("8", 0, $exists C exists T (P[C, T] -> not s(C, T))$, ""),
 ("9", 0, $not forall C forall T (P[C, T] -> s(C, T))$, "Property disproven"),
),
)
]

It is practical to note that that the set of counterexamples we find is
$ {(C, T) | exists X(R[X, C, T] and L[X, C] and P^R [X, C])} $
which is described by the image operation on $P^R and L$, $im(P^R and L, R)$.

We can prove that the counterexample analysis for negative properties is correct in a similar manner.

= Partitioned Abstraction Relations <partitionedIndexingRelation>
An important subclass of indexing relations that we consider is the partitioned indexing relation. A partitioned indexing relation is one that can be expressed in the following form:

$ R = and.big ("hexpr" -> "expr" and "lexpr" -> overline("expr")) $

Where `expr` is either some *target variable* or an *expression of symbolic constants* while `hexpr` and `lexpr` are in terms of only the indexing variables.

In the implementation, a partitioned abstraction relation is represented as a list of tuples of the form:

#align(center)[`[(expr = targVar / Cexpr, hexpr, lexpr)]`]

The indexing relations produced by the automatic abstraction algorithm and the manually constructed indexing relations that we use in our scalable examples are partitioned abstractions.

Partitioned abstractions allow computation of preimages which are critical for performing indexing transformations at scale.

== Efficient Weak Preimage Computation
We first normalise R into

$ R = S[X, C] and U[X, T] $
where $U[X, T] = and.big_(t_i in "TargVars") (h_i -> t_i and l_i -> overline(t_i))$

We can then make several observations.

Firstly, $ dom(R)[X, C] = S and and.big_(i) overline(h_i and l_i) $

Proof:
$
 dom(R)[X, C] &= exists T R[X, C, T]\
 &= S[X, C] and exists T U[X, T]\
 &= S[X, C] and and.big_i (exists t_i (h_i -> t_i and l_i -> overline(t_i))) \
 &= S[X, C] and and.big_i (((h_i -> 1) and (l_i -> 0)) or ((h_i -> 0 and l_i -> 1)))\
 &= S[X, C] and and.big_I (not l_i or not h_i)\
 &= S and and.big_(i) overline(h_i and l_i)
$

Thus we are able to compute the domain of the indexing relation easily.

Secondly, to compute the preimage of some guard $P[C, T]$, we let $R arrow.b P$ denote that the part of the indexing relation that mentions target variables present in P. Specifically, if $cal(F) = "FreeTargVars"(P)$ then

$ R arrow.b P = S[X, C] and and.big_(t_i in cal(F)) (h_i -> t_i and l_i -> overline(t_i)) $

We have that $P_R = dom(R) and P_(R arrow.b P)$

Proof:
$
 P_R [X, C] &= exists T (R[X, C, T] and P[C, T])\
 &= exists T (S[X, C] and and.big_(t_i in.not cal(F)) (h_i -> t_i and l_i -> overline(t_i)) and and.big_(t_i in cal(F)) (h_i -> t_i and l_i -> overline(t_i)) and P[C, T_cal(F)]) \
 &= S[X, C] and exists T_(not cal(F)) (and.big_(t_i in.not cal(F)) (h_i -> t_i and l_i -> overline(t_i)))\
 &space space and exists T_(cal(F)) (and.big_(t_i in cal(F)) (h_i -> t_i and l_i -> overline(t_i)) and P[C, T_cal(F)])\
 &= S[X, C] and exists T_(not cal(F)) (and.big_(t_i in.not cal(F)) (h_i -> t_i and l_i -> overline(t_i))) and exists T_(cal(F)) (and.big_(t_i in cal(F)) (h_i -> t_i and l_i -> overline(t_i)))\
 &space space and S[X, C] and exists T_(cal(F)) (and.big_(t_i in cal(F)) (h_i -> t_i and l_i -> overline(t_i)) and P[C, T_cal(F)]) \
 &= S[X, C] and exists T (and.big_(t_i in "targVars") (h_i -> t_i and l_i -> overline(t_i)))\
 &space space and exists T_(cal(F)) (S[X, C] and and.big_(t_i in cal(F)) (h_i -> t_i and l_i -> overline(t_i)) and P[C, T_cal(F)])\
 &= S[X, C] and and.big_i (overline(h_i and l_i)) and P_(R arrow.b P)\
 &= dom(R) and P_(R arrow.b P)
$

We can further consider common cases of P that we will be constructing preimages for.

$
 P_R = cases(
 dom(R) and P &"if " cal(F) inter "TargVars" = emptyset,
 dom(R) and overline(l_i) &"if " P = t_i,
 dom(R) and overline(h_i) &"if " P = overline(t_i),
 dom(R) and P_(R arrow.b P) space &"otherwise"
)
$

Proof:

If $cal(F) inter "TargVars" = emptyset$, $R arrow.b P = True$,
$ P_R = dom(R) and exists T (True and P[C]) = dom(R) and P[C] $

If $P = t_i$, $R arrow.b P = (h_i -> t_i) and (l_i -> overline(t_i))$,
$ P_R = dom(R) and exists t_i ((h_i -> t_i) and (l_i -> overline(t_i)) and t_i) = dom(R) and overline(l_i) $

If $P = overline(t_i)$, $R arrow.b P = (h_i -> t_i) and (l_i -> overline(t_i))$,
$ P_R = dom(R) and exists t_i ((h_i -> t_i) and (l_i -> overline(t_i)) and overline(t_i)) = dom(R) and overline(h_i) $

== Efficient Strong Preimage Computation
Observe that

$
 P^R &= dom(R) and overline(overline(P)_R)\
 &= dom(R) and not (dom(R) and P_(R arrow.b overline(P)))\
 &= dom(R) and not P_(R arrow.b overline(P))
$

Thus, the final conjunction with $dom(R)$ when computing a preimage is unnecessary if we are going to immediately be using the preimage to compute a strong preimage.

This represents an important speedup since we will be doing many strong preimage computations where computing $P_(R arrow.b overline(P))$ is easy (such as when $P = t_i$) but conjuncting it with $dom(R)$ is expensive since $dom(R)$ can be complex.

= Verification Under Environmental\ Constraints <environmentalConstraints>
Environmental constraints are constraints on the inputs to the circuit. They are of the form $J[C, T]$ to denote that we only need a constraint to hold if $J[C, T]$ is true. We call such a constraint a "care predicate".

== Indexing Relation Restriction <indexRelationRestriction>
An easy way to include environmental constraints is to just add them to the guards of the output constraint. We can then check for the property holding under the environmental constraint as described above.

However, this can lead to weak disagreements for abstractions /*#footnote([Notably, if we don't use abstraction then this should always work]) */ that merge cases in J and $not J$#extra([such as the green assignment in @paramedIndexingRelFigure]), since we cannot assume that J holds for the X, C indexing these cases.

It is thus desirable to find indexing relations that exactly index cases in J and not any in $not J$, i.e. $ forall C forall T space ((exists X R[X, C, T]) -> J[C, T]) $

We can get such an indexing relation by conjuncting the original indexing relation and the input constraint to make a new indexing relation.

$ R'[X, C, T] = R[X, C, T] and J[C,T] $

This will ensure that the indexing relation only ever indexes target variable assignments satisfying the care predicate#extra([, allowing the green assignment to be included in the strong preimage of a in @paramedIndexingRelFigure]). However, this can still lead to weak disagreements from the indexing relation being too coarse.

An additional way to mitigate the weak disagreements is to use the alternative checking method involving reversing the indexing (@alternativeChecking).

=== Preserve Partitioned Indexing Relation by Conditioning Antecedent
The indexing relation restriction unfortunately destroys the partitioned structure of partitioned indexing relations, meaning we cannot apply the efficient preimage computations from @partitionedIndexingRelation.

However, we can employ an equivalent strategy where we first modify each BDD expression E in the antecedent to the form $E' := (E and J) or overline(J) equiv J -> E$. We then do the strong preimage computations, allowing us to only consider the indexing cases we know E to be true when the care predicate is true
// (corresponding to those cases that map exclusively to the bottom left 3 quadrants the T,C space of @paramedIndexingRelFigure)
. We modify the guard of the output constraint to include J and do the checking as described above.

This approach will potentially cause some signals to be top, but only on indexing variable assignments that exclusively index $overline(J)$, such as the blue assignment in @paramedIndexingRelFigure. This is fine since J_R and J^R not will contain such cases, thus not affecting output checking procedures for neither correctness nor counterexample analysis. Since the only indexing cases that we consider during analysis are those that index at least one case in J, this is equivalent to the restriction method.

Since the indexing relation is preserved, we can use the efficient partitioned abstraction preimage operations.

== Parametric Encoding
#let al = $angle.l$
#let ar = $angle.r$
#let bp = $bold(p)$
An alternative approach is to use a parametric encoding @paramPaper of the input constraints. A parametric encoding uses the `param` function to compute a substitution of the input signals with functions of new parameterisation variables.

`param` takes a list of input constraints and a list of signals $s_1, s_2, ..., s_n$ and computes Boolean functions $f_1, f_2, ..., f_n$ from new parameterisation variables $bp = {p_1, ..., p_k}$ where $k <= n$ for the purpose of substituting $s_i := f_i (bp)$.

These functions satisfy the following conditions:
- (Soundness): $forall bp, al s_i := f_i (bp) | i in 1..n ar$ satisfies the input constraints
- (Completeness): $forall al s_1, s_2, ..., s_n ar$ that satisfy the input constraints, $exists bp space s_i = f_i (bp)$

An efficient algorithm to compute `param` is described in @paramPaper.

The intention of symbolic constants are such that they should not be abstracted or replaced. Thus, in our analysis of parametric encoding, we will assume that the symbolic constants are not part of the environmental constraint and thus not passed into `param`.

There are two ways to apply this to deal with environmental constraints.

=== Parametric Encoding of Indexing Relations <paramedIndexingRel>
The first strategy is to apply the parametric encoding to transform an independently computed indexing relation. This was suggested in @indexingTransformations but not proven sound.

#figure(
 caption: "Parametric Encoding of Indexing Relation",
 kind: image,
 supplement: [Figure],
)[
 #table(
 columns: 1,
 inset: 10pt,
)[
 #align(left)[
 Input: circuit, antecedent, input constraints, output constraints
 + Compute `param` on the input constraints
 + Substitute each BDD variable in the unrestricted antecedent with the corresponding function from the parametric encoding
 + Compute an indexing relation, possibly via the automatic abstraction algorithm
 + Substitute each BDD variable in the automatic abstraction result with the corresponding function from the parametric encoding
 + Perform indexing transformation on the parameterised antecedent, and output constraints
 + Perform symbolic simulation
 + Check whether the output constraint holds or a counterexample exists

 Output: proven, disproven (with counterexample) or unproven
]
]
]

We prove this to be sound.

Parameterising the antecedent is equivalent to binding the parameterisation functions onto each input to form a larger circuit. For each C, T such that $J[C, T]$ holds, we will have some C, T' that maps to it by the completeness of `param`.

The main base case for the symbolic simulation invariants still holds even though our input signals are now functions of the parameterisation variables. The input signals s are now replaced with the param functions f_s and our base case argument will still hold. This means that the symbolic simulation invariants will still hold.

Furthermore, assuming that the indexing relation $R[X, C, T]$ used satisfies the coverage condition $forall T forall C (J[C, T] -> exists X R[X, C, T])$ then the parameterised indexing relation $R'[X, C, T']$ will also satisfy the coverage condition, in terms of the new parameterisation variables, i.e. $forall T' forall C exists X R'[X, C, T']$ where T' is the new parameterised input signals.

#figure(caption: "Proof of Coverage Condition Satisfaction")[
 #ded-nat-boxed(
 stcolor: black,
 premises-and-conclusion: false,
 arr: (
 ("", 0, [Fresh C, T'], ""),
 ("1", 0, [Let $T = f(T')$], [Where f is the \ parametric encoding]),
 ("2", 0, $J[C, T]$, [Soundness of param]),
 ("", 0, $forall T forall C (J[C, T] -> exists X R[X, C, T])$, "Premise "),
 ("3, 4", 0, $exists X R[X, C, T]$, ""),
 ("5", 0, [Fresh $X*$ s.t. $R[X*, C, T]$], ""),
 ("", 0, [$R' = R[T\/f(T)]$], [Definition of R']),
 ("2, 6, 7", 0, $R'[X*, C, T']$, ""),
 ("1, 8", 0, $forall T' forall C exists X R'[X, C, T']$, [Since C, T' were \ arbitrary]),
),
)
]

The symbolic simulation invariants together with the coverage condition are sufficient premises for our proof of the output checking procedure to hold.

However, this approach also destroys the partitioned structure of the partitioned indexing relations.

==== Equivalence to Indexing Relation Restriction
#figure(caption: [Illustration of Indexing Relation and Parameterisation])[
 #image("img/IndexingRelationWithParam.png")
] <paramedIndexingRelFigure>

We see that the indexing cases that are included in the strong preimage operation on the antecedent are the same whether we are parameterising the indexing relation or restricting the indexing relation to the environmental constraint. Suppose we are taking the strong preimage of target variable a, we have that $a^R = (f_a)^(R')$. In either case, we only consider the indexing cases that at least map to one target variable assignment that satisfies $J and a$, and doesn't index any cases that satisfy $J and overline(a)$. Analysis is symmetric for taking the strong preimage of the negation of a target variable.

Furthermore,

$ dom(R') = {X, C | exists T' R'[X, C, T']} = {X, C | exists T (P[C, T] and R[X, C, T])} = J_R $

Both of them are the set of cases that index into at least one case in J. As such the output checks will be the same for both methods.

This means that both methods are equivalent.
///, i.e. will produce the same results (proven, disproven or unproven).

Since the indexing relation restriction is equivalent to the more efficient antecedent conditioning, this parametric method is also equivalent to that. Given the better efficiency of the method of conditioning the antecedent, that is a preferable method.

=== Parameterise Before Abstraction
While parameterising the indexing relation is not more effective than the restriction methods, our second strategy of using `param` before abstraction is more likely to be more effective.

#figure(
 caption: "Model Checking with Parameterisation Before Abstraction",
 kind: image,
 supplement: [Figure],
)[
 #table(
 columns: 1,
 inset: 10pt,
)[
 #align(left)[
 Input: circuit, antecedent, input constraints, output constraints
 + Compute `param` on the input constraints
 + Viewing each parameterisation function as a circuit, bind the functions to the inputs of the original circuit to form a larger parameterised circuit.
 + Compute an indexing relation on the larger circuit, possibly via the automatic abstraction algorithm
 + Substitute each BDD variable in the unrestricted antecedent of the original circuit with the corresponding function from the parametric encoding
 + Perform indexing transformations on the parameterised antecedent, and output constraints
 + Perform symbolic simulation
 + Check whether the output constraint holds or a counterexample exists

 Output: proven, disproven (with counterexample) or unproven
]
]
]

This approach will compute a new indexing relation that is not easily found as a modification of the non-parameterised indexing relation.

Soundness is proven similarly to @paramedIndexingRel.

= Experiments and Evaluation
== Content-Addressable Memory (CAM) <CAM_example>
We illustrate the effectiveness of symbolic simulation with symbolic indexing on a CAM.

#figure(caption: "Content-Addressable Memory")[
 #image("img/CAM.png")
]

The CAM stores N entries, each of D bits. It takes a query of D bits on each clock cycle and outputs on a `hit` whether the query matches any of its entries.

On each cycle our CAM will compare the query with each of the entries in parallel and take a logical OR of all the comparisons to get the `hit` value. The specification of our CAM compares each entry with the query in sequence, doing many binary ORs in series to check for a hit.

Our property is that the specification and the circuit agree on the `hit` value.

#let ch = "ch"
#let bch = $bold(ch)$
#let em = "em"
#let EM = "EM"
#let bem = $bold(em)$
#let bEM = $bold(EM)$
#let bq = $bold(q)$
#let mem = "mem"
#let bmem = $bold(mem)$

#extra([
 === Manual Indexing Relation
 We construct a partitioned indexing relation manually that correctly provides symbolic indexing for the CAM to be verified via symbolic simulation with reference to @camIndexing.

 The indexing relation encodes all the different ways that `hit` can be high or low. We will use the following indexing variables to effectively do case-splitting:
 - h: Boolean variable
 - Whether or not the `hit` wire should be high in the case being considered
 - bch: Vector of $log_2 N$ Boolean variables
 - bch is interpreted as an integer which encodes which entry in the CAM should match with the query in the case being considered, only relevant if h is high.
 - bEM: Matrix of size N by $log_2 D$ Boolean variables
 - Each $bem_i: em_(i)[0], em_(i)[1]..., em_(i)[log_2 D - 1]$ is interpreted as an integer to represent the bit of the ith entry of the CAM that should be different from the query, only relevant if h is low.

 We also have the query bq as a vector of symbolic constants, with length D.

 We will add the following conjuncts together to get the indexing relation:

 A conjunct that covers cases where the `hit` should be high:
 $ forall i forall j: h and (bch = i) => (bmem[i][j] = bq[j]) $

 A conjunct that covers cases where the `hit` should be low:

 $ forall i forall j: overline(h) and (bem_i = j) => (bmem[i][j] != bq[j]) $

 Where $0 <= i < N$ and $0 <= j < D$.

 Equality between Boolean vector encoded variables and the loop variables i or j are represented by a big conjunction of the individual bits or their negations to ensure the bit pattern formed from the whole vector matches that of the integer being compared to.

 Equality between target variables t and indexing/symbolic constants x is done by adding 2 tuples of the form
 - `(t, (premise AND x), false)`
 - `(NOT t, false, (premise AND NOT x))`
 to the indexing relation. This means that if the premise (such as $h and (bch = i)$) holds, then t will need to take the value of x. We can create analogous tuples for inequalities between target variables and indexing variables.

 Observe that coverage will be achieved since for any given values of the query and the entries of the CAM $bmem$, we will be able to find appropriate values for h, bch, bem that will satisfy the indexing relation.

 Observe that this approach has $1 + log_2 N + N log_2 D + D$ indexing variables and symbolic constants. This is exponentially less than the $N D$ variables that are considered without symbolic indexing. This also lets us know that we should see maximum gain in efficiency of proving wider entry CAMs rather than CAMs with more entries.
])

=== Results
We prove the correctness of different sizes of the CAM with manual abstraction based on @camIndexing, automatic abstraction and no abstraction. We measure the time taken for the different steps of running rSTE as follows:

#figure(caption: "Measured Times for rSTE Tests")[
 #show table.cell.where(y: 0): strong
 #show table.cell.where(x: 0): strong
 #set table(
 stroke: (x, y) => if y == 0 {
 (bottom: 0.7pt + black)
 },
 align: (x, y) => (
 left
),
)
 #table(
 columns: (30%, 70%),
 inset: 10pt,
 table.header(
 [*Timing*],
 [*Description*],
),

 [Abstraction Time],
 [Time taken to produce a partitioned indexing relation. For manual indexing relations, this is the time taken to construct the relevant BDDs for the indexing relation. For automatic abstraction, this is the time taken to run the automatic abstraction algorithm.

 Not included for unabstracted tests.],

 [Transformation Time],
 [Time taken to compute the domain and the strong preimage of each antecedent tuple. For these examples, the efficient preimage algorithms for partitioned indexing relations are used.

 Not included for unabstracted tests.],

 [Evaluation Time], [Time taken to run the symbolic simulator with the transformed antecedent.],
 [Check Time], [Time taken to verify the output constraint is correct after the simulation.],
)
]

#figure(caption: "Symbolic Simulation on CAM with Manual Indexing")[
 #grid(
 columns: 2,
 [#image("graphs/cam_manual_8_entries.png")], [#image("graphs/cam_manual_8_entries_stacked.png")],
 [#image("graphs/cam_manual_16_entries.png")], [#image("graphs/cam_manual_16_entries_stacked.png")],
 [#image("graphs/cam_manual_32_entries.png")], [#image("graphs/cam_manual_32_entries_stacked.png")],
)
]

With manual abstraction, the time taken to perform each step of the proof grows linearly with the length of the data entries in the CAM, as is expected based of the indexing relation constructed.

#figure(caption: "Symbolic Simulation on CAM with Automatic Abstraction")[
 #grid(
 columns: 2,
 [#image("graphs/cam_autoAbstract_8_entries.png")], [#image("graphs/cam_autoAbstract_8_entries_stacked.png")],
 [#image("graphs/cam_autoAbstract_16_entries.png")], [#image("graphs/cam_autoAbstract_16_entries_stacked.png")],
)
]

With automatic abstraction, we still see the linear growth in time taken to perform the proof, but the time taken is longer compared to manual abstraction. With the manually constructed indexing relation, the rate of increase in evaluation time is the fastest. With automatic abstraction, this is the abstraction time.

#figure(caption: "Symbolic Simulation on CAM with No Abstraction")[
 #grid(
 columns: 2,
 [#image("graphs/cam_noAbstract_8_entries.png")], [#image("graphs/cam_noAbstract_8_entries_stacked.png")],
 [#image("graphs/cam_noAbstract_16_entries.png")], [#image("graphs/cam_noAbstract_8_entries_stacked.png")],
)
]

Comparatively, when we run the symbolic simulation without abstraction, the time taken to perform the proof grows exponentially with the length of the data entries in the CAM and quickly becomes intractable.

== Multi-Input Maximum Circuit <maxCircuit_example>
We also showcase the method on a maximum circuit. The maximum circuit takes N inputs, each of length D, and every clock cycle, will output the maximum of all the inputs, treating them as binary integers. This is implemented as a binary tree of 2-input maximum operations between tree nodes, with the output at the root.

#figure(caption: "Maximum Circuit")[
 #image("img/maxCircuit.png")
]

Rather than using a specification that does the same computation in a different way, this circuit has a natural relational specification that consists of two properties:
- Contained Property: The output is one of the input values
- Bounded Property: The output is at least as large as all the input values

#figure(caption: "Maximum Circuit Specification Circuit")[
 #image("img/maxCircuitSpec.png")
]

=== Manual Indexing Relation
We construct a partitioned indexing relation that exponentially reduces the number of BDD variables needed for symbolic simulation.

We have the following indexing variables:
#let bt = $bold(t)$
#let bs = $bold(s)$
#let bd = $bold(d)$
#let bins = $bold("ins")$
#let by = $bold(y)$

#figure(caption: "Variables for Max Circuit Manual Indexing")[
 #show table.cell.where(y: 0): strong
 #set table(
 stroke: (x, y) => if y == 0 {
 (bottom: 0.7pt + black)
 },
 align: (x, y) => (
 if x == 0 or y == 0 { center } else { left }
),
)
 #table(
 columns: (16.8%, 30%, 65%),
 inset: 10pt,
 table.header(
 [*Variables*],
 [*Type*],
 [*Purpose*],
),

 [bt],
 [Vector of D Boolean variables],
 [bt represents the target output of the maximum circuit.

 All cases that lead to the circuit producing x will be covered by some indexing cases where $bt = x$],

 [bd],
 [Matrix of size N by $log_2 D + 1$ Boolean variables],
 [
 $bd_i: bd_i [0], ..., bd_i [log_2 D]$ encodes an integer that represents the number of most significant bits of the ith input will be the same as the corresponding bits of bt before the critical bit of i which will be low in $bins[i]$ but high in bt],
)
]

These form conjuncts that we merge together to form the indexing relation:

#figure(caption: "Conjuncts for Max Circuit Manual Indexing")[
 #show table.cell.where(y: 0): strong
 #set table(
 stroke: (x, y) => if y == 0 {
 (bottom: 0.7pt + black)
 },
 align: (x, y) => (
 if x == 0 or y == 0 { center } else { left }
),
)
 #table(
 columns: (50%, 50%),
 inset: 10pt,
 table.header(
 [*Conjunct*],
 [*Purpose*],
),

 [$ or.big_(i = 0)^(n-1) (bd_i = D) $], [Ensures that at least one entry will completely match the target output],
 [$ forall i forall j: (D - j <= bd_i) =>\ (bins[i][j] = bt[j]) $],
 [Ensures the most significant bits of each input match with the target output],

 [$ forall i forall j: (D - 1 - j = bd_i) =>\ (bins[i][j] = 0) and (t[j] = 1) $],
 [Ensures the critical bit for each entry is high in the target output but low in the input],
)
]

where $0 <= i < N$, $0 <= j < D$.

Abstraction is achieved by the lack of restriction of the bits less significant than the critical bits in each input since their value will not affect the output.

#extra([
 Constructing the actual partitioned indexing relation from the above rules follows a similar process to that done for the CAM. The only new formula is $by >= x$ for some Boolean encoded variable y and a loop variable x. To construct such a formula, we consider binary representation of x and use the following structural recurrence:

 $
 "geq"((by_0, ..., by_(n-1)), (x_0, ..., x_(n-1))) &:= (by_(n-1) > x_(n-1)) or "geq"((by_0, ..., by_(n-2)), (x_0, ..., x_(n-2))) \
 &equiv (by_(n-1) and not x_(n-1)) or "geq"((by_0, ..., by_(n-2)), (x_0, ..., x_(n-2)))\
 "geq"((by_0), (x_0)) &:= (by_0 = 1) or (x_0 = 0)
 $
])

This takes $D + N log_2 D + N$ variables, exponentially less than the $N D$ variables used for symbolic simulation without symbolic indexing.

#extra([
 Note that only the second and third conjuncts mention target variables. The first conjunct serves as a means of restricting the domain of our indexing relation ones where at least one bd_i is equal to D. Compared to the manual indexing of the CAM, the domain in this case is not just $True$.
])

=== Results
#figure(caption: "Symbolic Simulation of Max Circuit with Manual Indexing")[
 #grid(
 columns: 2,
 [#image("graphs/maxCircuit_manual_2_entries.png")], [#image("graphs/maxCircuit_manual_2_entries_stacked.png")],
 [#image("graphs/maxCircuit_manual_4_entries.png")], [#image("graphs/maxCircuit_manual_4_entries_stacked.png")],
 [#image("graphs/maxCircuit_manual_8_entries.png")], [#image("graphs/maxCircuit_manual_8_entries_stacked.png")],
)
]

With manual indexing, the the abstraction time mostly grows linearly with size of the circuit. However, the transformation time grows super-linearly, probably due to the larger BDDs that must be manipulated, particularly the domain of the abstraction relation.

The evaluation time grows super-linearly at an even faster rate. This seems to be because, compared to the CAM, the maximum circuit has its entire comparison tree take $O(D)$ input and $O(D)$ output rather than comparing single wires.

#figure(caption: "Symbolic Simulation of Max Circuit without Abstraction")[
 #grid(
 columns: 2,
 [#image("graphs/maxCircuit_noAbstract_2_entries.png")],
 [#image("graphs/maxCircuit_noAbstract_2_entries_stacked.png")],

 [#image("graphs/maxCircuit_noAbstract_4_entries.png")],
 [#image("graphs/maxCircuit_noAbstract_4_entries_stacked.png")],

 [#image("graphs/maxCircuit_noAbstract_8_entries.png")],
 [#image("graphs/maxCircuit_noAbstract_8_entries_stacked.png")],
)
]
Super-linear scaling is also seen in the no abstraction case, but the rate in increase is much faster, resulting in the proof quickly becoming infeasible.

Unfortunately we are not able to prove either of the max circuit properties with the automatic abstraction algorithm. This is likely due to over-abstraction. Unlike for the CAM, here there are no obvious candidates for symbolic constants, which was our primary defense against over-abstraction.

= Conclusion
We have reinvented the theory of symbolic indexing transformations for rSTE and implemented it in Jasper. We have shown that the method can be more effective than running symbolic simulation without symbolic indexing.

== Future Work
Automatic abstraction is critical to be able to apply rSTE widely. The speed of the automatic abstraction algorithm developed in the companion project is currently a limiting factor in efficient rSTE proofs. Furthermore, over-abstraction has proven to be a problem. Thus, work on counterexample guided abstraction refinement @counterExampleGuidedAbstractionRefinement of the automatically discovered indexing relations such as in @abstractionDiscoveryAndRefinement would make rSTE much more practical.

While we described methods to deal with environmental constraints, we have yet to implement or evaluate these methods. This would be a good area of further work.

STE and rSTE work on the level of individual bits which could limit the level of abstraction that can be achieved. Existing work has been done to extend STE to work on the level of data values @wordLevelSTE @firstOrderSTE. An area of further work is to extend indexing transformations and automatic abstraction to work on these variants.
#pagebreak()
#bibliography(("works.bib", "works2.yml"))

// Data Sources for Graphs
#pdf.embed("results/CAM_manualAbstract.txt")
#pdf.embed("results/CAM_autoAbstract.txt")
#pdf.embed("results/CAM_noAbstract.txt")
#pdf.embed("results/maxCircuit_manualAbstract.txt")
#pdf.embed("results/maxCircuit_noAbstract.txt")

		NUM_ENTRIES		 DATA_LENGTH		 abstraction_time		 transform_time		 eval_time		 check_time

		 8		 16		 404826		 773014		 11953		 5176

		 16		 16		 822202		 1529253		 22967		 5182

		 32		 16		 1651034		 3031020		 55076		 5688

		 8		 32		 882831		 1553475		 24243		 5270

		 16		 32		 1753506		 3044401		 51076		 5789

		 32		 32		 3515629		 6045534		 124876		 5701

		 8		 64		 1890804		 3120915		 58061		 5969

		 16		 64		 3806015		 6133960		 129980		 5585

		 32		 64		 7499715		 11811721		 339274		 5185

		 8		 128		 4108775		 6227167		 161854		 5615

		 16		 128		 8210272		 12328933		 382638		 5574

		 32		 128		 16377366		 24525164		 1047073		 5599

		 8		 256		 8604167		 12034723		 448700		 5138

		 16		 256		 17478777		 24461856		 1101054		 5550

NUM_ENTRIES, DATA_LENGTH, abstraction_time, transform_time, eval_time, check_time
 8, 16, 6573475, 785598, 15224, 3035
 16, 16, 12939787, 1511674, 43331, 3254
 8, 32, 13084916, 1557486, 34241, 3053
 16, 32, 26233601, 3018162, 69323, 3531
 8, 64, 25793996, 3066286, 76795, 3044
 16, 64, 53358555, 6097580, 183445, 3360

NUM_ENTRIES, DATA_LENGTH, eval_time, check_time
 4, 4, 6122, 4726
 8, 4, 7642, 4905
 16, 4, 10980, 4273
 4, 8, 13603, 5071
 8, 8, 13441, 3462
 16, 8, 22400, 3385
 4, 16, 5783841, 3613
 8, 16, 12097990, 3690
 16, 16, 24315217, 3866

		NUM_ENTRIES		 DATA_LENGTH		 abstraction_time		 transform_time		 eval_time		 check_time

		 4		 2		 58885		 69909		 5692		 5222

		 8		 2		 98357		 117388		 11678		 5362

		 4		 4		 106126		 121840		 14524		 5315

		 8		 4		 167836		 238551		 67619		 6269

		 4		 8		 180576		 247280		 65453		 5883

		 8		 8		 331812		 870223		 7667396		 5961

		 4		 16		 363814		 708752		 1925573		 6007

		 2		 2		 28190		 39766		 4515		 5962

		 2		 4		 62376		 69606		 6189		 5125

		 2		 8		 111656		 119271		 16897		 5195

		 2		 16		 202226		 244296		 50509		 5864

		 2		 32		 408947		 473248		 467652		 5893

		 2		 64		 894795		 964095		 5640172		 6303

		 2		 128		 1959388		 2034817		 79018028		 405622

		 4		 32		 788923		 11380934		 82398524		 6273

		NUM_ENTRIES		 DATA_LENGTH		 eval_time		 check_time

		 4		 2		 5778		 8273

		 8		 2		 8925		 8242

		 4		 4		 16709		 8207

		 8		 4		 43320		 5930

		 4		 8		 129199		 5983

		 8		 8		 938002		 5935

		 2		 2		 12443		 8297

		 2		 4		 15818		 8584

		 2		 8		 27618		 8597

		 2		 16		 10852496		 6362

