Page 1 of 66

Presented by SG
IMMC 2020 — Flash Sale

Summary:

Flash sales are times when the price of products are greatly reduced, for a limited time only. A
prime example of a flash sale is the Black Friday sales in the United States, where shoppers
rush to purchase gifts for friends and family. However, in the mad dash that ensues, there is
inevitably damage to the products on sale. These damages are borne by the company, which is
detrimental to the profits earned. Hence, it is important for these companies to minimise
damages incurred during the flash sale. In order to do so, owners must know the optimal layout
that minimises damages. By identifying the major layout factors that cause damage to products,
we can come up with a suitable floor plan to minimise the damage done to the items.

Our first task was to identify the factors that lead to damage of the items. By relating it to
measurable quantities such as the density of people, we can estimate the level of damages in
the entire shop. Events that lead to damage of the items include collision between shoppers,
collapse of shelves, collision of shoppers with shelves and so on. We identify the level of
damage to be primarily dependent on the density of shoppers and the price of the damaged
goods, and calculate a damage value from these two factors.

Our second task was to identify the factors contributing to the popularity of products. This was
necessary as popularity of products would affect the density of shoppers around certain areas.
In this section, we used economics to study the quantifiable factors such as size and discount
amount in order to calculate a popularity index for all items. This popularity index was then
used to find the density of shoppers around each department.

Our third task was to develop a mathematical model to create the best layout plan of the store
to minimize damage. This was further separated into three steps. Firstly, we determined the
physical factors that affect density of shoppers, which include the number of shelves and
relative placements of the departments. Secondly, based on the floor plan provided, we ran a
simulation to calculate the total damage value for different arrangements of departments, to
find the optimal locations for each department. Finally, we generated our own floor plan based
on the data gathered from the simulations to minimise damage done to the products. We then
tested our own floor plan and made adjustments to optimise the floor plan.

Finally, we performed sensitivity analysis on various independent variables in our model to see
how our model performs with different types of parameters. The results were that our model
was robust, performed as expected and did not contradict with logic. Thus, we conclude that
our model is indeed well developed for our task.

Page 2 of 66

Table of Contents

Section 1: INErOAUCTION...........covveeeeeueriiiiiiirriieiiiiiiisiiiiirreieeeiiiiiiiiiissseessnssissiesnssesssssssissssnens 3
Section 2: Types of damage tO ProdUCESeeueeeeeerereeeeeeeeereunserenereenserensserenseessssessnsseses 3
2.1. Damage to entire shelves of products from collisions of shoppers with shelves............. 4
2.2, Damage to adjacent products when grabbing products from shelves..........ccccceeeeriennnnnns 4
2.3. Damage due to collision between shoppers carrying products.......ccccccireuniieiiennicnninnncnns 5
2.4, Damage due to dropping products due to crowd and rushccccceeeirirniciiinnicniennninn 5
2.5, TOtal dAamMaABe..cuuuiiiieeiiiiiiiiiiiiiiiiiieiierirenerirsssettsassettssssssttsssssstessssssssssssssssssssssssnsssnns 5
Section 3: Factors affecting popularity of products................ceeeeeeeeniereeereencerreereeesesnensenns 5
3.1. Net rating of Product ..ot e re e s s e e s e s a s s s senasssssenassssnens 6
3.2. 11 =Ta Uot VA < T T3 USSR 7
3.3. LOSS @aVersion factorcccceiiiiiiiiiii 7
3.4. (13T oT=Tot o o [ol 11 4| A0 N 7
3.5. Relative popularities of products..........ccccceireeeeiiieiiiiiiirce e seena e s e e nnneenen 9
Section 4: Description of store Iayout facCtOrscevvvveuiiirvveeiiriieeesisriesnsissssnssssssesnnes 10
4.1. Number of ShelVes ... 10
4.2. Location of the most popular departments........ccceeeceiiireieriieercciirereerrree e reenenees 10
4.3. TYPE OFf SNEIVES ... ettt rree e s rrees e s s e ne s s s e enasesseensssssennssssnennssssnennnes 11
4.4. The location of cashier COUNEErs..........cceeeeiiiieiiiiiieieieiiieienaaaaaaas 11
Section 5: Model and Results ANAIYSISccc.uueeeveveeeiirivveniisiiennsiiniinnssissiessssssssssssssssnnes 11
5.1. ASSUMPTIONS ceuuiiiiiiieeiiieniiiieieieeiiiniiinstiasistnesstssssrssssrsessrssssrsssssssssssnsssenssssnsssssssssnssssns 11
5.2. Description of Model..........ooeeeiiiiecrr e enn e s e e nnna e 12
5.3. Simulation and results analysis........ccceeiiiiiiiiiiiiiiniiini s esees 15
Section 6: Generation Of NEW flOOr PIONeeeeeeeeeeveeneeeeerereeeereererenniereesserensesenssesennnes 18
6.1. Minimising number of Shelves.......ccccciivviiiiiiiiiiiiiiiiii s 18
6.2. Optimal arrangement of departments.......cccecciiiiiiiiiiiiiiiiinin e 18
6.3. Optimal arrangement of shelves.........cccccciiviiiiiiiiiiiiiini e 18
6.4. Optimal position of cashier COUNErSc.cccviiiiiiniiiiiiiiinii e sressssesees 19
Section 7: SENSILIVILY ANGIYSIS ...eeueeeeueeeeuueereererennrerenierenseeensserenssessnsessnsserssssesssssssnssessnnans 21
7.1. Crowd avoidance of ShOPPErs......cccciiiiiuiiiiiiuiiiiiiiiiiiiiieieresresaessessssessessssssens 21
7.2, Maximum shelf capacity — number of products..........c.ccceeiiiiiniiiiiiniiiiinnicni, 21
7.3. Maximum shelf capacity —size on shelfccccoiiiiiiiiiiiiiiiiiiiii e 22
7.4. Shopper carrying Capacitycicveieiiinuiieiiiniiniiiiiiniiiieemesisesssenses 22
7.5. L] 3o 0T 0 =T Y 2 23

CONCIUSION caueeeeeeeereereeeeererrereeseeersssessssessssssassssessssssssssssssssssssasssssssssssssssssssssssssassssannssans 23

Page 3 of 66

=] = N 24
FIOOF PlON DiQGIAMS «......eeeeeeeeeneeenurereunsereneeennserensserensesssssessnssessnsssssssessnssessnsssssssessnssesense 25
Y 1= R 26
(01 [o T XN 43

Section 1: Introduction

3.1. General assumptions

We will be considering general assumptions in the event which determine how we create a
model to determine the level of damage for different department layouts.

1) We assume that the size of one shopper is between 40-60 arbitrary units (a.u.) and the
size of the largest product (the refrigerator) is 100 a.u.. Thus, each cell can only hold a
maximum of 300 arbitrary units (2 x size of shopper (50 a.u.) + 2 X size of refrigerator)
or there will definitely be a collision.

2) We assume that each shopper will take different products until they carry a maximum
of three products or such that their total size (person and products) is less than 300 a.u.
since it will be difficult for a normal shopper to walk around with too many or very
heavy products.

3) We assume that each cell of the shelf has the same carrying capacity and can carry up
to 3 different units of products or 150 a.u. worth of items. This is because the store is
likely to space out their items to prevent overcrowding during a flash sale.

Section 2: Types of damage to products

Damage to products can be caused by 4 types of events, but each type of event is dependent
on a few common factors.

Table 1 Variables associated with damage level

Dy Total damage in all cells
Dcent snoppers L€Vel of damage in each cell due to collision of shoppers

Deent sheis Level of damage in each cell due to collision of shoppers with shelf
Deeur_drop Level of damage in each cell due to shoppers dropping items

S Stability of one shelf

Zy Size of products

Zs Size of a shopper

Peell Density of cell

Padjusted Adjusted density of each cell

d, Distance between two adjacent products on the same shelf

h Height of each layer of the shelf

ny, Number of products each customer is holding

Page 4 of 66

PTeell Price of the cell

PTiotal Total price of all goods in the store
DTadjusted Adjusted price of each cell

DTshelf Total price of all goods on a shelf
P_outision Probability of collision

2.1. Damage to entire shelves of products from collisions of shoppers with shelves

If shoppers collide with the shelves of products due to the large crowd and narrow aisle, the
shelves may topple, damaging entire shelves of products. The level of damage can be modelled
to be based on the stability of the shelves and the density of the shoppers around the shelves.

Assuming that the height of each shelf is the same, the stability of shelf is

S=kAkeR
When the shelf topples, all the products on the shelf are damaged. The price of shelf toppling
is hence

DTshelf = PTproduct
all products on the shelf
The density of each cell is

Pcet = Z (Zp + Z)
all shoppers on cell
The price of each cell is the sum of the prices of all the products shoppers are carrying is

PTee = PTproduct
all products carried by shoppers

We assumed that the probability of collision with a shelf is linearly related to the size of the
shopper based on the kinetic theory of gases, which states that the pressure on the container
walls is proportional to the size of the molecules. When the size of the shopper and his products
is 150 a.u., the shopper will definitely collide with the shelf beside and P ision = 1-
Zy+Zg
Peontision = 150
The damage in each cell due to collision of shoppers with shelves is therefore

Dcell_shelf = E X Pcollision X (prshelf + prcell)
2.2. Damage to adjacent products when grabbing products from shelves

Shoppers may accidentally knock adjacent products off the shelves when securing products
they wish to purchase off the shelf due to a lack of consideration for their surroundings.

The level of damage is related to ease of taking products from shelves. The closer the proximity
between products, the more likely the shopper is to cause damage to adjacent products. At the
same time, when the vertical distance between shelves is larger, it is easier for shoppers to grab
their desired products quickly, thus they are less likely to damage adjacent products.

Page 5 of 66

In the model, given that there are only a maximum of 3 units of objects per shelf, they should
be sufficiently spaced such that the products are undamaged from the knocking of adjacent
products. Thus, we did not consider this source of damage in our model.

2.3. Damage due to collision between shoppers carrying products

When shoppers rush around the store, they may collide with each other, causing the products
they have on hand to fall, resulting in damages. The level of damage depends on the density of
the shoppers, and the total price of their products. The greater the density of shoppers the
greater probability of collision.

Based on the kinetic model of matter, the collision frequency is proportional to the square of
the number of particles in a system. Thus, we model the probability of collision between
shoppers to be proportional to the square of the density of each cell.

_ [min(pcellr 300)]2
Pcollision - 3002

where 300 a.u. is the sum of the size of 2 shoppers and 2 fridges.
Therefore, the damage in each cell due to collision between shoppers is

Dcell_shoppers = Fcotlision X PTcell
2.4. Damage due to dropping products due to crowd and rush

When shoppers are holding many products, they may drop their products due to the amount
they are carrying. Therefore, the equation for damage due to dropping products is the same as
damage due to collision between shoppers carrying products.

_ [min(pcell; 300)]2
Dcell_drop - 3002 X PTeell

2.5. Total damage
The total damage incurred by the shop is therefore
Dy = Z Deenr

all cells
Section 3: Factors affecting popularity of products

We calculate a value of popularity for each product, depending on the inherent popularity and
the popularity due to the discount.

Table 2 Variables associated with popularity rating of products

R onsumer Customer rating of the product

Ryrand Brand rating of the product

Ryet Net rating of the product

PED Price elasticity of demand

PED, Relative price elasticity of demand

PTproduct Price of the product

Y Median daily income of the shopper

Per Percentage of households with the specific type of the product

U Utility gained by shoppers from buying the product

Page 6 of 66

Uy Utility lost by the shopper from buying the product at initial price

U, Utility gained by shoppers from the discount

Ufinai Final utility lost by shoppers from buying the product at the discounted
price

Unet Net utility gained by shoppers from buying the product at the discounted
price as compared to the initial price

Laversion Loss aversion factor of inherent popularity of the product

Sinherent Inherent saliency of the specific product

Ssurrounaings Saliency of surrounding products to the specific product

d Distance between the shelves

p
Pop; Inherent popularity of the product
Pop, Increase in popularity due to the discount

Popyeiative Relative popularity of product

Brand Rating

Net Rating - NtJ![I!d]I.ﬁl'd Net
Rating
- Consumer Rating
. Normalised Loss 3
- Quantity - | Inherent Popularity
f 1 : r‘ Adversion P ’
= Normalised
- Saliency Bias

Database

Papularity Based on
Tradit 1

/ / Economics A
- Inital Price Effect of Discount Final Popularit
on Popularity b

Popularity Based on

A

Behavioural
/ / Economics
Discoumed Price

v

Figure 1: Flowchart of popularity calculations

3.1. Net rating of product
The net rating of the product depends on the customer rating and brand rating of the product.
3.1.1. Customer rating

The higher the customer rating, the more popular the item will be. Shoppers see it as more
desirable, making it more popular.

3.1.2. Brand rating

Page 7 of 66

When choosing products, consumers do not only consider the customer rating of individual
products, but also the brand of the products. Taking the average of customer ratings for
different products from the same brand gives us a brand rating.

1 ReustomerOf the nth item from the specific brand

Ryrana =
ran n

The net rating is a weighted average of brand and customer ratings. Brand rating is given a

lower percentage of 20% as 20% of consumers purchased an item solely based on their opinion
of a brand.

Rper = 80% X Reystomer + 20% X Rprana
3.2. Saliency bias

Saliency bias refers to the fact that individuals are more likely to focus on products or
information that are more prominent. The more obvious the item is, the more likely shoppers
are to take notice of the item and purchase the item.

Inherently, the effect of saliency bias increases with increasing size of the product, in this model,
they are assumed to be proportional.

SQinherent = Sigmoid(Zp)

Additionally, the product location may affect the shoppers’ decisions as well. The effect of
saliency bias on shelves of products can be modelled to be based on the proximity and quantity
of adjacent shelves as well as the saliency of products in the adjacent shelves. A greater saliency
of adjacent shelves is assumed to lower the saliency of the shelf in question as a shopper’s
attention are deviated away to the nearby shelves.

Thus the net effect of saliency bias on a shelf i next to a shelf j is:

Salienc)’(i) = Sainherent(i) - Sasurroundings(i)

all shelves

saliency(i) = Saipnerent (1) — Z dist(i,j) % saliency(j)
shelf j

When computing saliency(i), we initialise all shelves with saliency equal to their inherent
saliency and iteratively update the values of the saliency of the shelves.

3.3. Loss aversion factor

Loss aversion is a principle which suggests that “losses loom larger than corresponding
gains”. When the quantity of a particular item available is smaller, shoppers feel more urgent
about buying the products since they try to avoid the prospective losses resulting from failing
to buy the products. Therefore, products which are already in small quantities on shelves will
be more popular and more likely to be purchased. Hence, the loss aversion factor of
popularity of the item is inversely related to the quantity available.

Lgpersion = —eduantity availablexb \,pore p js the loss aversion constant
3.4. Impact of discount

The discount affects the popularity of the item being sold. To analyse the relationship between
the discount amount and the popularity of the item, we utilise traditional and behavioural
economics in terms of calculating the price elasticity of demand of a good and evaluating the
expected utility of the product given that humans are not rational decision-makers.

3.4.1. Price Elasticity of Demand

Page 8 of 66

Price Elasticity of Demand (PED) measures the responsiveness of quantity demanded of a good
to a change in its price. It thus measures change in desirability of the good due to the discount.

%AQ _ dQ % prproduct

%Apr dprproduct Q
In comparing the relative impact of discount, we will consider the relative PED. PED has 4
determinants: proportion of income, degree of necessity, availability of substitutes and time

period. As availability of substitutes is generally high for the electronic appliances available,
and the time period is equal to the time of the flash sale, we did not consider these factors.

prproduct
Y

To measure the degree of necessity, we take the percentage of shoppers who use the item as
an indicator of its necessity. Relative PED is taken to be the product of these two factors.

PED, = W X Per = 3—g X —prprédu“

As price changes from P, to P;, quantity changes from Q, to Q;.

Proportion of income =

P1 1
j (? X Per) dprproduct = [InQ] from Q, to Q4
Py

(pry — pry) X l>< Per = ln(ﬁ)
1 0 Y QO

As price elasticity of a good increases, any fall in price will result in an increase in quantity
demanded, hence showing an increase in popularity.

3.4.2. Prospect Theory

Prospect theory states that the loss in value from a certain loss is greater than the gain in value
from a gain of the same amount. This is depicted by having a steeper utility curve at negative
utility. People tend to think of discounted objects as losing the initial cost of the item and then
gaining back the discount. Thus, to quantify the effect of the discount, we see shopper’s change
in utility before and after the discount.

In this case, the “loss” is the amount spent on the item without discount, and the gain is the
amount of the discount.

Page 9 of 66

- A
2 .
0 >
oy
- -2
_4 4
-6 Uo
-30 -20 -10 0 10 20 30
Loss / Gains

Figure 2: Utility function

U is a function from [0,0) to [0,0) which is strictly concave, strictly increasing, twice
differentiable, and such that U(0)=0 (Fig. 2). We choose the function

U(x) =log(x+ 1)

As it meets the required conditions while being easy to implement. To quantify the effects of
the discount, we measure the change in the utility as a result of the discount.

Ufinal = Uy, + U,
Uchange = Ufinal — Uinitiat = Wy + Uy) — Uy = Uy
3.5. Relative popularities of products

We first normalised the value of each factor such that they were within the range of 0 to 1, then
used a weighted average system to calculate relative popularity and impact of discount of each
item (Table 3).

Factor Weight
Inherent Net rating, R,q¢ 0.5
popularity, Pop;) : -

L Saliency bias, saliency(i) 0.06

Loss aversion, Lgyersion 0.44
Factors relating to | Relative Price Elasticity of Demand, PED, 0.5
discount, Pop,

Prospect theory, Ucpange 0.5

Table 3: Weights of each factor of popularity

The net rating of a product has the highest weight as with the products being much cheaper,
shoppers have a tendency to buy high quality products, especially since they would want to

Page 10 of 66

make their money worth and spend more on higher quality products which would otherwise be
much more expensive.

Loss aversion has the second highest weight as flash sales do not occur very regularly. When
shoppers are satisfied with the quality of the products and want to buy the item, they tend to be
concerned about the quantity available so as to not lose out. Saliency bias has the lowest weight
as during flash sales, many shoppers usually already have what they want to buy in mind and
the location of the products and whether they are obvious is less likely to affect its popularity.

Pop; = 0.5 X R.t + 0.06 X saliency(i) + 0.44 X Layersion

The factors relating to discount was not considered and not assigned a weight as it is an
additional factor which adds on to the popularity. We took the mean of the factors relating to
the discount.

POpd _ (Uchange2+ PEDr)

Therefore, relative popularity is

Popreiative = Sigmoid(Pop; + Popy)

Where sigmoid(x) = 7 +1e‘x
Section 4: Description of store layout factors
Table 4 Variables associated with store layout
Neype Number of products for each type
Ngept Number of products in each department
Nshoppers Number of shoppers in the store
Popgept Popularity of the department

4.1. Number of shelves

The greater the number of shelves, the higher the density of shoppers, and the more likely it is
for collision to occur. Thus, the greater space available for movement will decrease the damage,
assuming that the number of customers remains the same.

That being said, with a greater number of shelves, the density of products on shelves is lower.
Thus, shoppers will not have to crowd around shelves as much, potentially resulting in less
damages.

4.2. Location of the most popular departments

Assuming that the shoppers are rational, they will rush to grab the most popular products first.
Thus, shoppers tend to gather at the shelves of the most popular products, increasing risks of
damage at those locations. Moreover, as shoppers run to the products by the order of popularity,
the location of the popular products will also affect the paths of the shoppers in the shop, thus
affecting the most possible locations of the collisions happening. However, we did not consider
the location of individual products as it is logical for products to be grouped in departments,
thus we use the popularity index of each department instead (Table 5).

Page 11 of 66

To differentiate the different departments, we calculated a popularity index that ranks the
popularity of the department as a whole by taking the mean popularity of all items in the
department.

_ Zall types of items in the department(Poprelative Of each type X ntype)

FoPaep: = Ngept
Department Pop gept Popularity ranking
Appliances 0.82373 1
Audio 0.76331 6
Cameras 0.77866 5
Cell phones 0.75089 7
Computers and tablets 0.79837 4
TV and Home theatre 0.81369 2
Video Gaming 0.81305 3

Table 5: Popularity of each department
4.3. Type of Shelves

3x 3x
3x 3x 3x
3x 3x
3x 3x 3x 3x 3x
‘Spaced out’ shelves ‘Long’ shelves

Figure 3: Types of shelves

The first type of shelf arrangement are ‘spaced out’ shelves where cells are in small clusters.
This arrangement creates multiple paths between the shelves for the shoppers to move,
reducing the probability of their paths overlapping. Therefore, such an arrangement reduces
the density of shoppers around the shelves, reducing probability of collision.

The second type of shelf arrangement are ‘long’ shelves where cells are in a long strip. In such
a situation, shoppers have limited paths to move to the counters after taking their desired
products. The probability of paths overlapping in the narrow path between the adjacent shelves
increases. However, the area of each path increases, reducing probability of collision (Fig. 3).

4.4. The location of cashier counters

Since the counters are the final destination of all the shoppers, the location of the counters will
significantly affect the paths of the shoppers. Areas near cashier counters are also places where
there will be a high density of shoppers, and based on factors previously identified, this would
increase the likelihood of collision.

Section 5: Model and Results analysis

5.1. Assumptions

Page 12 of 66

1) Despite shoppers having different tastes and preferences, our model assumes that they
buy from the top 5 most popular products based on the calculated relative popularity of

each product.

2) Assume there is a continuous flow of shoppers into the store as during a flash sale, there
are a lot of shoppers trying to secure the discounts. This is realistic as there is typically

a queue outside a store during a flash sale.

3) Assume all shoppers are travelling through the store at the same speed. This is a
reasonable assumption as the crowd size limits how fast each individual can travel.

4) The model assumes all products in the shop are sold out after the sale. This is realistic
as a common feature of flash sales is their limited quantity of products available.

5.2. Description of model

Store layout factors

2. location of
departments

1. number of shelves

3. location of shelves
4. location of counter

h 4
We generate a
possible layout.

Input
—

MODEL
considers
popularity of
products to
map out
shortest path
of shoppers

Output
—_—

shopper density, p..i;
and price of each cell, pr .

DceII -

Dy

v

(min(pgey, 300))?
_ @G 000

= Z Dceil

all cells

damage, D

Figure 4: Description of model

We used the above mentioned 1m by 1m grid system for this model. The shelves are marked
out on the grid (in scale) and we logically divided the shelves into departments such that the

number of shelves in each department is similar.

Each department area is indicated by a number, and products are placed into shelves according
to their department as shown in Figure 5.

Page 13 of 66

A
S
\J

1

CHECKOUT

EXIT /ENTRANCE

Store Floor Plan

Figure 5: Division of departments

The products each shopper goes to is one of the top 5 most popular products found by the
relative popularity, Pop,4tive OF €ach product. Each shopper moves from shelf to shelf taking
different products until they carry a maximum of three products or 300 arbitrary units.

We used the A* search algorithm to generate the paths of our shoppers. It is commonly used
for path-finding purposes to efficiently find the shortest path by assigning heuristic values to
the cells. The lower the heuristic value, the closer the action brings the shopper to their target
destination. Hence, we applied this to individual shoppers in our model, such that shoppers
always take the shortest path from the entrance of the shop to the shelf of their desired products.
The algorithm is generally representative of a rational shopper that takes the shortest path to
get their products quickly.

To determine the density of shoppers in each cell, we superimposed the path travelled by all
the shoppers together onto the same grid, such that each cell on the grid shows the sum of the
sizes of all the shoppers and the products they have on that cell.

Similarly, we calculate the price density of cells by superimposing the path travelled by all
shoppers together where the price density in each cell is the sum of the prices of all the products
of all the shoppers that traversed the cell.

Using the values and equations above, the damage done can then be calculated (Fig.4).
5.2.1. First basic model

We ran the simulation on a 8*8 grid with and obtained a reasonable result where damage was
concentrated at certain areas. In this model, the entrance was at 7,7, the exit was at 7,6 and
the counter was at 7,0. We ran the simulation with only 3 shoppers shopping for 2 types of
products, placed at the shelves in 1,2 and 1,5 respectively (Fig.6). Note that coordinates are
labelled as (y,x) where 0,0 is the upper left-hand corner.

Page 14 of 66

This assured us that our model worked and we hence proceeded to increase the number of the
shelves and the shoppers based on the realistic situation.

Shelves in Grid

Price Density Grid Shopper Density Grid

Figure 6: First basic model

This showed that our path finding algorithm was working because the shoppers visited the
required shelves and did not waste time walking in the region between the 2 rows of shelves.

5.2.2. Fine Tuning
Allowing shoppers to avoid crowds

In the previous model, shoppers would move without regarding the current density of other
shoppers. However, this is not realistic as shoppers tend to avoid places with high density of
people as that would let them move more quickly. Thus, we tweaked the model such that the
heuristic value of the cells would increase with density of people. Thus, shoppers would avoid
cells with higher densities of people.

Introduction of adjusted price density of each cell

At first, we defined the value of the products carried by each shopper to be constant and equal
to the total price of the products being carried throughout the shopper’s whole journey. For
example, if one shopper carries products with a total price of $x, each cell the shopper walks
past will be assigned a value of $x. Once the density of shoppers in any of these cells exceeds
the maximum density of 300 a.u., a collision happens, the cell immediately loses all of the
value assigned to it.

However, it is unrealistic for a product to be completely damaged after only one collision. For
instance, the collision may only damage the product packaging, but the product can be resold
at a lower price, though it may be lower than its initial value.

Another problem with this model was that when we added up the values of all the cells to
calculate the damage, it would never equal to the total price of all the products being sold in
the store. This is because the value $x of the same product is assigned to multiple cells that the
shopper walks past and hence the value of each product was counted multiple times when we
added up the value of all cells to obtain the total price.

To solve these problems, we refined our model by introducing the adjusted price of each cell,
which is obtained by equally distributing the total value of products held by each shoppers over
every cell the shopper has walked past. In the above case, assuming that the shopper walks past

n cells, the value of each cell will be assigned as $ % instead.

This implies that in reality, one product could experience multiple collisions before it is
completely damaged. At the same time, if the shopper takes a longer path, there would be a

Page 15 of 66

lower possibility of damage of the products resulting from each single collision since the
damage is spread out along his path.

Thus, by replacing pr,y; in the model with pryqjysceq, We €nsured that the total price of all the
cells is equal to the total initial value of all the products as well. pr4ysteq Can be obtained by

taking the ratio of the price of one cell to the price of all cells, and rebasing it over the total
value.

PTeeul
Zall cells PTcell
PTiorar = $891,784.61

Introduction of adjusted shopper density of each cell

PTadjusted = X PTtotal

Similarly, by replacing pce;; With pgqjusteq the total density of all the cells is equal to the total
size of all the shoppers and products. p,qjusteq Can be obtained by taking the ratio of the
density of one cell to the sum of the density of all cells, and rebasing it over the total size of
shoppers and products.

Pcell

Padjusted = X Ztotal

Zall cells Pcell

Ztotal = Z Zproducts +nshoppers X 50a. u.

all products
5.3. Simulation and results analysis

By rearranging different departments around the store and finding the total damage in the store
for that layout, we can find the best arrangement of departments in the floor plan that minimises
damages.

We only considered the rearrangement of the top two most popular departments (Appliances
and TV & Home theatre) based on the department popularity ranking since it would take too
long to simulate all permutations of all seven departments. This is also reasonable as the most
popular departments will have the most significant impact on the movement of the shoppers.

5.3.1. Location of departments

By rearranging the top 2 most popular departments, we generated 42 other arrangements.
Results of the arrangements which causes the top 2 most damage and results of the arrangement
which gives the 2 least damage are shown in Table 6:

Arrangement Area of Position of TV and Total
Appliances Home Theater Damage

1 (Least damage) 7 1 $4394

2 (Second least damage) 6 1 $4432

3 (Second greatest damage) 4 7 $4752

4 (Greatest damage) 4 6 $4772

Table 6: Best and worst department arrangements

Page 16 of 66

AT |F1

Shelves in Grid Price Density Grid Shopper Density Grid

10 1

20 g

n 0

a0 10 .
o 10] £ &0

A6 |F1

Price Density Grid

40 o 1 4] 0 40

Shopper Density Grid

Shelves in Grid

o 0
w 1 '.
N
2 o J
» -]
@ [= e
n 10 0 » a0 :

Shelves in Grid

o
m @
0
o
0 1] n] a0

Shelves in Grid

(]
0 % ‘
0

[10 £ n At

Figures 7-10: Results from 2 best and 2 worst department layouts

5

Shopper Density Grid

2@

In the shelf grid, shelves are in yellow, the counter is in green while the entrance and exit are
the turquoise colours (Fig.7-10).

Based on the simulation, the level of damage is the least when the departments are arranged as
seen in Figure 11.

Page 17 of 66

\J

TV and Home Theatre

© CeII phones
ﬂ)

m
IIE el e N e

Am = H
E Appliances —
Audlo - -

CHECKOUT '_) I

\=

aI1eay] BWOH PUB AL —

Sm
SCALE

EXIT /ENTRANCE

Store Floor Plan

Figure 11: Optimal arrangement of departments

In better layouts, activity zones are spread out (in the lower left hand corner and in the upper
right hand corner) while for the relatively worse layouts, activity zones are all on the right. We
concluded that we should spread out popular products to reduce congestion around them.

Despite “Appliances” and “TV & Home Theatre” being the most popular, only “TV & Home
Theatre” seemed to be creating a cluster regardless of position. Thus, it would be necessary to
put the “TV & Home Theatre” far from other popular product clusters.

In all cases, zones 5 and 2 had high price density, this is likely due to the shape of shelves
rather than the arrangement of departments as this high price density cluster is present in all
simulations. Thus, we learnt that we should reduce the number of long and narrow aisles to
allow shoppers to spread out more, lowering price and shopper density.

However, we also realized that we cannot have completely ‘spaced out’ shelves, where all the
shelves were split into merely small blocks. This is because while there are more paths, the
paths would be narrow with no large open spaces between shelves, increasing the shopper
density and probability of collision.

5.3.2. Location of specific items

The most popular items within each department should be placed on shelves with the most
space around them. In the arrangement of departments which resulted in the least damage, the
most popular departments have a lot of empty spaces around the shelves. Thus, we generalised
to say that the most popular items of each department should also be placed spaced out as much
as possible within the department.

Page 18 of 66

Section 6: Generation of new floor plan

By considering the number of shelves, the arrangement of departments, the type and layout of
shelves and the position of cashier counters, we proposed a layout which we believe would
incur the lowest cost. Each factor is explained in greater detail below.

6.1. Minimising number of empty shelves

As empty shelves take up walking space but do not provide utility, we should lower the number
of empty shelves.

As certain departments require more cells (shelves) than other departments as they have a larger
quantity of items, the number of shelves for each department should be different to correspond
to the number of items in each department instead of allocating a similar number of cells to all
departments (Table 7).

Department Minimum shelves in terms of cells
Appliances 119
Audio 18
Cameras 59
Cell phones 19
Computers and tablets 159
TV and Home theatre 134
Video Gaming 62

Table 7: Minimum number of shelves
6.2. Optimal arrangement of departments

For our proposed layout, as we have already obtained the optimal layout of departments, we
would be focusing on the optimal layout of shelves within each department. i.e. the relative
location of the departments remains the same as mentioned above.

6.3. Optimal arrangement of shelves

Initially, to increase the number of paths between shelves, we used many “spaced out” shelves
and our layout is shown in Figure 12. After running the simulation, we realised that our net
loss was higher than the current store floor plan at $4769. Furthermore, we note from the
shopper density grid that many of the small aisles that we placed were not being used by
shoppers. This confirms that we cannot have completely “spaced out’ shelves as explained
above.

Page 19 of 66

Net Loss: 4769

Shelves in Grid Price Density Grid Shopper Density Grid

20

30

Figure 12: 1% proposed layout

By combining some “spaced out” shelves together, we were able to create large open spaces
between shelves while still ensuring that there were still multiple paths to the shelves (Fig. 13).
After running the simulation, we realised that the damage suffered decreased significantly to
$4226.

Net Loss: 4226

Shelves in Grid Price Density Grid Shopper Density Grid

-

20 20

30

40

Figure 13: 2" proposed layout

6.4. Optimal position of cashier counters

As the position of cashier counters determines the path shoppers take after obtaining their
desired products, the cashier position should be placed such that shoppers have many routes
which they can take to reach it. This decreases the density of shoppers along each path,
reducing the probability of collision. From our simulation, the position of the counter should
be moved 7m to the right to incur the least cost (Fig. 14).

Page 20 of 66

4180

Net Loss
Net Loss
=

1 o 1 2 3 z a 11
Counter Vertical Movement Counter Right Movement

Figure 14 &15: Graph of damage against vertical and horizontal positions of cashier counter

As there is minimal difference in the damage incurred when counters are moved up and down
(with the exception of the counter being especially close to the shelf above it where damage
incurred increased significantly), the vertical position of the cashier counter can remain the
same (Fig. 15). The spread and number of counters does not significantly decrease the damage
incurred (refer to Annex), thus we do not change the spread and number of counters.

Therefore, our final proposed layout as shown in Figure 16 and 17 only incurs a damage of
$4129.

TV & Home Theatre

[. I
] | |]
g c N] <
il 2o = D0 |-
T I jl T
-y
1110] -1 |:
Appliances L &
Audio IIIIIIIE
Cashier
Exit Entrance

Figure 16: Final proposed layout

Page 21 of 66

Net Loss: 4129

Shelves in Grid Price Density Grid

Shopper Density Grid

ol

10 10

20 20

30 30

40

[v] 10 20 30 40

0 10 20 30 40

Figure 17: Damage results from the final proposed layout
Section 7: Sensitivity Analysis

In this section, we varied some key parameters to test the response of the model to different
scenarios.

7.1. Crowd avoidance of shoppers

This variable is varied within the domain of [0,10], with the baseline value being 0.5.

30000 1 ||
|
25000 1 \

\ 25000 { |
1

20000 |

Met Loss

15000 1 |
| |
10000 4 1

10000 { |

5000 1 L 5000 4 ||

04 UID DILI El ; ; 0
Crowd Avoidance Crowd Avoidance

Figures 18&19: Graphs of damage against crowd avoidance

From Figures 18 and 19, it can be seen that with any positive value of crowd avoidance, loss
incurred decreases to about 4000-5000 and remains in that range despite further increases in
crowd avoidance. The high loss incurred when crowd avoidance is 0 is due to shoppers ignoring
other shoppers that may be in their way (Table A4.1). Shoppers thus walk into each other and
collide more frequently. However, once there is at least a small amount of crow avoidance,
shoppers quickly spread themselves out and shopper density becomes nearly homogenous. This
results in a lower loss than if there was no crowd avoidance. However, due to the degree of

homogeneity of the shopper density after there is a small amount of crowd avoidance, there is
no benefit from further increases in crowd avoidance.

7.2. Maximum shelf capacity — number of products

The maximum shelf capacity in units of products was varied within domain [3, 500], with
baseline value of 150.

Page 22 of 66

5800

5600

5400

5200

5000

Net Loss

o 100 200

300 400
Number of Products Per Shelf

Figure 20: Graph of damage against number of products per shelf

With increasing max. quantity of products per shelf, shoppers crowd around shelves more
(Table A4.2), this results in a greater rate of collisions between shoppers and between shoppers
and shelves, leading to higher damages (Fig. 20). However, past a certain point, the limiting
factor for products being placed into shelves is the shelf capacity (size). Thus subsequent
increases in the maximum number of products per shelf have no impact on damage incurred.

7.3. Maximum shelf capacity — size on shelf

Maximum shelf capacity in terms of total size of items was varied in the domain [150,500],
with baseline value of 150.

4280

4260

4240

4220

Net Loss

4200

4180

150 200 250 30

o] 350
Capacity per Shelf (Size)

400 450

Figure 21: Graph of damage against capacity of shelves

Total loss seems to be relatively independent with respect to the shelf capacity (Table A4.3 and
Fig. 21). This is because the shelves are largely limited by the number of products per shelf.
Thus, increasing the capacity of shelves without increasing the maximum number of products
per shelf does not reduce loss.

7.4. Shopper carrying capacity

The maximum carrying capacity of a shopper and their products was varied in domain
[160,440], with baseline value of 300.

Page 23 of 66

Net Loss

150 200 250 300 350 400 450

Max Shopper Capacity
Figure 22: Graph of damage against maximum shopper carrying capacity

As shoppers’ carrying capacity increases, the number of products each shopper buys rises, thus
the number of shoppers which will enter the shop falls (Fig. 22), thus we see less collisions and
less damage to products (Table A4.4). However, past a certain point (400), shoppers walk
around the store for a longer time, resulting in higher damages.

7.5. Shopper size
The size of shoppers was varied in the domain [10, 190] with baseline value of 50.

40000

30000

20000

Net Loss

10000

25 50 75 100 125 150 175
Mean Size

Figure 23: Graph of damage against the mean size of shoppers.

With higher size, probability of collisions increases at a rate proportional to the square of the
mean size (Fig. 23). This is consistent with our equation to calculate the probability of collision
between shoppers (Section 2.3).

Conclusion

By considering different store layout factors as well as the popularity of items sold in the store,
we have come up with a mathematical model which not only allows us to determine the optimal
location of products and departments based on a given floor plan, but it also allowed us to come
up with an improved floor plan. We also conducted sensitivity analysis and further ascertained
that it is a model which is logical and robust.

Page 24 of 66

Letter
To the owner of IMMC Electronic and Appliance Store:

Dear Sir/Madam,

After modelling the expected density of shoppers in the store and the popularity of the items
you sell, we were able to predict the behaviour of shoppers during a flash sale. In the process,
we considered 4 layout factors: the number of shelves, the arrangement of departments, the
type and layout of shelves and the positioning of the cashier counter. Our recommended floor
plan to incur the least damage is attached below.

Firstly, we recommend minimising the number of empty shelves used and to use shelves which
are spaced out and not too long. Both of which allow large open spaces to be present between
shelves while still ensuring that shoppers have multiple routes of movement around the shelves.
By doing so, the density of shoppers along each route is reduced, lessening the likelihood of
collisions occurring.

Secondly, we recommend that your departments be placed in the layout shown below, where
the most popular departments are spread out. For placement of specific sale products on the
shelves, we recommend spacing out the most popular products. This lessens the crowd density
around the most popular products and most popular departments, reducing the probability of
collision. With fewer collisions, the products are less likely to be damaged, hence minimising
the loss incurred.

Lastly, using our mathematical model, we determined a better location for the cashier counters.
The cashier position in our proposed layout is such that shoppers have many routes which they
can take to reach it. Similarly, this decreases the density of shoppers along each possible path,
reducing the probability of collision and minimising loss.

Besides the layout, some other recommendations we have are to:

1. Secure the shelves to the floor to eliminate the chances of shelves toppling and causing
damage and injuries to products and shoppers respectively.

2. For items that cost more than $100, we recommend showing discounts in absolute
values, whereas for items that cost less than that, a percentage discount would be more
attractive. This helps to maximise the quantity of items bought and make the most
earnings.

We hope that our suggestions will be helpful and we wish you all the best for your opening and
flash sales.

Best regards,

Bethany, Brandon, Rachel, Xin Yao

Page 25 of 66

Floor Plan Diagrams

Requirement 2c: Department layout of orlglnal floor plan

\J

TV and Home Theatre

-
>

&
]

‘3

© Cellphones
@
g n i
? |3| | EE EE EE
dsm B S = 1
i Appliances 2
BB —r——— o
Audlo 3
21 2] 2] -
E
1]
—
CHECKOUT'_’} | 2
= &
m
AN NNNN NN |
¥ - _]

EXIT/ENTRANCE

Store Floor Plan

Requirement 2d: Proposed layout

TV & Home Theatre

—

Camera
Cell phones

[.
I L] | |
[_]
[_]
L L]

Appliances

Audio IIIIIII

Cashier

I B B N
aneay [, SWoy ¥ AL

bppedld

Exit Entrance

ANnex

Table Al: Extensions of Raw Data

Page 26 of 66

Name

Brand
Rating

Percentage
Usage

Size (m:)

index_size

40" 1080p Smart LED
HDTV, 5 Series

4.623809524

0.95

0.029812826

2.012689585

2-in-1 11.6" Touch-Screen
Chromebook, Intel Celeron,
4GB RAM, 32GB

4.5

0.78

0.00160599

0.108421768

2-in-1 12.2" Touch-Screen
Chromebook, Intel Celeron,
4GB RAM, 32G

4.623809524

0.78

0.00160599

0.108421768

2-in-1 14" Touch-Screen
Chromebook, Intel Core i3,
4GB RAM, 128GB

4.58

0.78

0.00160599

0.108421768

2-in-1 14" Touch-Screen
Chromebook, Intel Core i3,
8GB RAM, 64GB eMMC Fla

4.631578947

0.78

0.00160599

0.108421768

2-in-1 11.6" Touch-Screen
Chromebook, 4GB RAM,
32GB eMMC Flash Mem

4.4

0.78

0.00160599

0.108421768

2-in-1 13.3" 8GB RAM
256GB Flash Memory

4.623809524

0.78

0.00160599

0.108421768

2-in-1 11.6" 4GB RAM 32GB
Flash Memory

4.58

0.78

0.00160599

0.108421768

2-in-1 14" Touch-Screen
Laptop, Intel Core i5, 8GB
RAM, 256GB S

4.631578947

0.78

0.00160599

0.108421768

2-in-111.6" Touch-Screen
Laptop, Intel Pentium, 4GB
RAM, 128GB

4.631578947

0.78

0.00160599

0.108421768

2-in-1 15.6" 4K Ultra HD
Touch-Screen Laptop, Intel
Corei7, 16GB

4.631578947

0.78

0.00160599

0.108421768

43" 4K UHD HDR Smart
LED TV, 6 Series

4.623809524

0.95

0.029812826

2.012689585

Page 27 of 66

50" 4K UHD HDR Smart

LED TV, 7 Series 4.623809524 | 0.95 0.047288851 | 3.192511117
50" 4K UHD HDR Smart

LED TV, NU6900 Series 4.623809524 | 0.95 0.047288851 | 3.192511117
55" 4K UHD HDR Smart

LED TV, NUG6900 Series 4.623809524 | 0.95 0.047288851 | 3.192511117
55" 4K UHD HDR Smart

LED TV, X800G Series 4.769230769 | 0.95 0.047288851 | 3.192511117
50" 4K UHD HDR Smart

LED Roku TV 4.6 0.95 0.047288851 | 3.192511117
55" 4K UHD HDR Smart

LED Roku TV, 4 Series 4.6 0.95 0.047288851 | 3.192511117
55" 4K UHD HDR Smart

LED TV, UK6090PUA Series | 4.533333333 | 0.95 0.047288851 | 3.192511117
65" 4K UHD HDR Smart

LED TV, NU6900 Series 4.623809524 | 0.95 0.073433795 [4.957578881
65" 4K UHD HDR Smart

LED TV, 7 Series 4.623809524 | 0.95 0.073433795 | 4.957578881
65" 4K UHD HDR Smart

LED TV, X800G Series 4.769230769 | 0.95 0.073433795 | 4.957578881
65" 4K UHD HDR Smart

LED TV, X900F Series 4.769230769 | 0.95 0.073433795 [4.957578881
65" 4K UHD HDR Smart

LED Roku TV, 4 Series 4.6 0.95 0.073433795 [4.957578881
65" 4K UHD HDR Smart

LED TV, H6500F Series 4.3 0.95 0.073433795 [4.957578881
75" 4K UHD HDR Smart

LED TV, NUG6900 Series 4.623809524 | 0.95 0.098117873 | 6.624022282
70" 4K UHD HDR Smart

LED TV, 6 Series 4.623809524 | 0.95 0.098117873 | 6.624022282
75" 4K UHD HDR LED

Smart TV, X800G Series 4.769230769 | 0.95 0.098117873 | 6.624022282
85" 4K UHD HDR Smart

LED TV, X900F Series 4.769230769 | 0.95 0.153331477 | 10.35154032
55" 4K UHD HDR Smart

OLED TV, A8G Series 4.769230769 | 0.95 0.047288851 | 3.192511117

Page 28 of 66

65" 4K UHD HDR Smart

OLED TV, A8G Series 4.769230769 | 0.95 0.073433795 | 4.957578881
65" 4K UHD HDR Smart

QLED TV, Q70 Series 4.623809524 | 0.95 0.073433795 | 4.957578881
65" 4K UHD HDR Smart

QLED TV, Q60 Series 4,623809524 | 0.95 0.073433795 | 4.957578881
65" 4K UHD HDR Smart

QLED TV, Q80 Series 4,623809524 | 0.95 0.073433795 | 4.957578881
75" 4K UHD HDR Smart

QLED TV, Q70 Series 4.623809524 | 0.95 0.098117873 | 6.624022282
75" 4K UHD HDR Smart

QLED TV, Q60 Series 4.623809524 | 0.95 0.098117873 | 6.624022282
32" 720p LED HDTV 4533333333 | 0.95 0.029812826 | 2.012689585
32" 720p Smart LED HDTV

Roku TV, 3 Series 4.6 0.95 0.029812826 | 2.012689585
32" LED 720p Smart TV,

H5500 Series 4.3 0.95 0.029812826 | 2.012689585
23.8" Touch-Screen All-in-

One, Intel Core i5, 12GB

RAM, 256GB SSD 4.631578947 | 0.89 0.013165918 | 0.888842474
27" Touch-Screen All-in-One,

Intel Core i7, 12GB RAM,

256GB SSD 4,631578947 | 0.89 0.013165918 | 0.888842474
23.8" Touch-Screen All-in-

One, AMD Ryzen 3-Series,

8GB Memory, 256GB 4.4 0.89 0.013165918 | 0.888842474
Wireless All-in-One Printer 4.6 0.82 0.016121347 | 1.088366056
Wireless Color All-in-One

Printer 4.6 0.82 0.016121347 | 1.088366056
Wireless All-in-One Printer 4.6 0.82 0.016121347 | 1.088366056
Wireless All-in-One Printer 4.631578947 | 0.82 0.016121347 | 1.088366056
Wireless All-in-One Instant

Ink Ready Printer 4.631578947 | 0.82 0.016121347 | 1.088366056

Page 29 of 66

Color Wireless All-in-One
Printer

4.631578947

0.82

0.016121347

1.088366056

Streaming 4K Ultra HD
Audio Wi-Fi Built-In Blu-Ray
Player

4.623809524

0.44

0.01179878

0.796545852

Streaming 4K Ultra HD Hi-
Res Audio Wi-Fi Built-In
Blu-Ray Player

4.769230769

0.44

0.01179878

0.796545852

Streaming 4K Ultra HD Hi-
Res Audio Wi-Fi Built-In
Blu-Ray Player

4.769230769

0.44

0.01179878

0.796545852

4K Ultra HD Blu-Ray Player

4.533333333

0.44

0.01179878

0.796545852

Streaming Audio Wi-Fi Built-
In Blu-Ray Player

4.533333333

0.44

0.01179878

0.796545852

Streaming Audio Blu-Ray
Player

4.533333333

0.44

0.01179878

0.796545852

DSLR Camera, Body Only,
Black

4.866666667

0.62

0.000764555

0.051615758

DSLR Camera, Body Only,
Black

4.6

0.62

0.000764555

0.051615758

DSLR Two Lens Kit with
AF-P DX NIKKOR 18-
55mmf/3.5-5.6G VR &

4.866666667

0.62

0.000764555

0.051615758

DSLR Two Lens Kit with 18-
55mm and 70-300mm Lenses,
Black

4.866666667

0.62

0.000764555

0.051615758

DSLR Camera with 18-55mm
IS STM Lens, Black

4.6

0.62

0.000764555

0.051615758

DSLR Two Lens Kit with EF-
S 18-55mm IS Il and EF 75-
300m

4.6

0.62

0.000764555

0.051615758

Mirrorless Camera Two Lens
Kit with 16-50mm and 55-
210mm Le

4.769230769

0.62

0.000764555

0.051615758

Full-Frame Mirrorless
Camera with 28-70mm Lens,
Black

4.769230769

0.62

0.000764555

0.051615758

Page 30 of 66

Mirrorless Camera with FE
28-70mm F3.5-5.6 OSS Lens

4.769230769

0.62

0.000764555

0.051615758

Mirrorless Camera with Lens

4.6

0.62

0.000764555

0.051615758

11.6" Chromebook, Intel
Atom x5, 2GB Ram, 16GB
eMMC Flash Memory

4.623809524

0.78

0.00160599

0.108421768

11.6" Chromebook, Intel
Atom x5, 4GB Memory,
32GB eMMC Flash Memo

4.623809524

0.78

0.00160599

0.108421768

1TB Fortnite Neo Versa
Console Bundle - Jet Black

4.769230769

0.5

0.01538341

1.03854729

32GB Console - Gray Joy-
Con + 2 more items

4.6

0.5

0.01538341

1.03854729

1TB Star Wars Jedi: Fallen
Order Deluxe Edition Console
Bundle

4.733333333

0.5

0.01538341

1.03854729

1TB NBA 2K20 Bundle -
Black

4.733333333

0.5

0.01538341

1.03854729

Desktop, Intel Core i7, 8GB
RAM, 256GB SSD

4.631578947

0.89

0.013165918

0.888842474

Intel Core i7 9700, 16GB
RAM, NVIDIA GeForce
GTX 1660 Ti,

4.631578947

0.89

0.013165918

0.888842474

24" Tall Tub Built-In
Dishwasher, Monochromatic
Stainless Steel

4.475

0.49

0.33069095

22.32523142

24" Front Control Tall Tub
Built-In Dishwasher, Stainless
Steel

4.3

0.49

0.33069095

22.32523142

7.0cu ft 13-Cycle Electric
Dryer, White

4.475

0.68

0.5136853

34.67933792

7.2cu ft 3-Cycle Electric
Dryer, White

4.45

0.68

0.5136853

34.67933792

7.3cu ft 8-Cycle Electric
Dryer, White

4.533333333

0.68

0.5136853

34.67933792

Page 31 of 66

7.4cu ft 10-Cycle Smart Wi-
Fi Enabled Electric Dryer,
White

4.533333333

0.68

0.5136853

34.67933792

Gamer Supreme Liquid Cool
Gaming Desktop, AMD
Ryzen 7 3700X

4.9

0.89

0.046047157

3.108683303

Gamer Master Gaming
Desktop, AMD Ryzen 5
3600, 8GB Memory

4.9

0.89

0.046047157

3.108683303

Gamer Master Gaming
Desktop, AMD Ryzen 3
2300X, 8GB Memory

4.9

0.89

0.046047157

3.108683303

Gaming Desktop, Intel Core
i15-9400F, 8GB RAM,
NVIDIA GeForce G

4.7

0.89

0.046047157

3.108683303

Gaming Desktop, Intel Core
i17-9700K, 16GB RAM,
NVIDIA GeForce

4.7

0.89

0.046047157

3.108683303

15.6" Gaming Laptop, Intel
Core i5, 8GB RAM, NVIDIA
GeForce GTX 1650, 51

4.5

0.78

0.002115212

0.142799775

17.3" Gaming Laptop, Intel
Core i7, 16GB RAM,
NVIDIA GeForce GTX 1660
T

4.5

0.78

0.002115212

0.142799775

15.6" Gaming Laptop, AMD
Ryzen 5, 8GB Ram, NVIDIA
GeForce GTX 1050, 25

4.631578947

0.78

0.002115212

0.142799775

15.6" Gaming Laptop, Intel
Core i7, 32GB RAM,
NVIDIA GeForce RTX 2060,
5

4.6

0.78

0.002115212

0.142799775

Wireless Wearable Speaker -
Black

4.7

0.16

0.000121762

0.008220287

Wireless Noise Cancelling
Earbud Headphones -
Graphite

0.16

0.000121762

0.008220287

Wireless Bluetooth Headset -
Black

4.533333333

0.16

0.000121762

0.008220287

Page 32 of 66

28" LED 4K UHD Monitor,

UES90 Series 4.623809524 | 0.5 0.068763781 | 4.642302183
24" LED FHD Monitor,

Black 45 0.5 0.068763781 | 4.642302183
27" LED QHD G-Sync

Monitor, Black 4.58 0.5 0.068763781 | 4.642302183
20.7" LED FHD Monitor 4.631578947 [0.5 0.068763781 | 4.642302183
27" IPS LED FHD FreeSync

Monitor, 27f 4.631578947 [0.5 0.068763781 | 4.642302183
31.5" IPS LED FHD Monitor | 4.631578947 | 0.5 0.068763781 | 4.642302183
32" LED QHD Monitor 4.631578947 | 0.5 0.068763781 | 4.642302183
1.6¢cu ft Over-the-Range

Microwave, Black on

Stainless 4.6 0.93 0.135599677 | 9.154451217
1.6¢cu ft Over-the-Range

Microwave, Stainless Steel 4.45 0.93 0.135599677 | 9.154451217
15" 16GB RAM 256GB Solid

State Drive 4.623809524 | 0.78 0.00160599 |[0.108421768
15.6" Touch-Screen Laptop,

Intel Core i5, 8GB Ram,

256GB SSD 4.58 0.78 0.00160599 | 0.108421768
15.6" Touch-Screen Laptop,

Intel Core i3, 8GB Ram,

128GB SSD 4.58 0.78 0.00160599 | 0.108421768
14" Laptop, AMD A9 Series,

4GB Ram, AMD Radeon R5,

128GB SSD, Windows 4.631578947 | 0.78 0.00160599 |[0.108421768
17.3" Laptop, Intel Core 15,

8GB Memory, 256GB SSD,

Jet Black, Maglia Pattern 4.631578947 | 0.78 0.00160599 | 0.108421768
2-in-1 15.6" Touch-Screen

Laptop, Intel Core i7, 12GB

RAM, 512GB S 4.631578947 | 0.78 0.00160599 | 0.108421768

Page 33 of 66

11.4" Laptop, AMD A6
Series, 4GB Ram, AMD
Radeon R4, 65GB e

4.4

0.78

0.00160599

0.108421768

13.5" 8GB RAM 256GB
Solid State Drive

4.733333333

0.78

0.00160599

0.108421768

30" Built-In Single Electric
Wall Oven, Stainless Steel

4.475

0.9

0.53880666

36.37530261

5.1cu ft Freestanding Gas
Range, Stainless Steel

4.475

0.9

0.53880666

36.37530261

5.3cu ft Slide-In Electric
Range, Stainless Steel

4.45

0.9

0.53880666

36.37530261

5.0cu ft Freestanding Gas
Range, Stainless Steel

4.45

0.9

0.53880666

36.37530261

6.3cu ft Slide-In Electric
Range with ProBake
Convection, Stainless Steel

4.533333333

0.9

0.53880666

36.37530261

30" Combination Double
Electric Convection Wall
Oven with Built-In
Microwave

4.533333333

0.9

0.53880666

36.37530261

24 7cu ft French Door
Refrigerator, Black Stainless
Steel

4.475

0.99

1.4812431

100

26.8cu ft French Door
Refrigerator, Stainless Steel

4.475

0.99

1.4812431

100

25.1cu ft Side-by-Side
Refrigerator, Fingerprint
Resistant, Stainless Steel

4.45

0.99

1.4812431

100

27.8cu ft 4 Door French Door
Refrigerator, PrintProof,
InstaView Door-in-Door,
Stainless

4.533333333

0.99

1.4812431

100

26.2cu ft French Door Smart
Wi-Fi Enabled Refrigerator,
PrintProof, Black Stainless

4.533333333

0.99

1.4812431

100

App-Controlled Robot
Vacuum

4.35

0.43

0.012742581

0.860262638

Page 34 of 66

App-Controlled Self-
Charging Robot VVacuum 4.5 0.43 0.012742581 | 0.860262638
App-Controlled Self-
Charging Robot VVacuum 4.4 0.43 0.012742581 | 0.860262638
App-Controlled Robot
Vacuum 4.4 0.43 0.012742581 | 0.860262638
Bagless Cordless Pet
Handheld/Stick Vacuum 4.35 0.43 0.1635429 11.04092232
10.1" Tablet, 32GB 3.7 0.52 0.000417673 | 0.028197498
12.3" Tablet, 64GB 4.1 0.52 0.000417673 | 0.028197498
Ball Animal 2 Bagless
Upright Vacuum 4.7 0.43 0.1635429 11.04092232
Ball Animal + Allergy
Bagless Upright Vacuum 4.7 0.43 0.1635429 11.04092232
4.3cu ft 12-Cycle Top-
Loading Washer, White 4.475 0.98 0.53310397 | 35.99030909
3.8cu ft 12-Cycle Top-
Loading Washer, White 4.475 0.98 0.53310397 | 35.99030909
4.2cu ft 11-Cycle Top-
Loading Washer, White on
White 4.45 0.98 0.53310397 | 35.99030909
4.1cu ft 11-Cycle HE Top-
Loading Washer, White 4.4 0.98 0.53310397 | 35.99030909
3.8cu ft 12-Cycle Top-
Loading Washer, White 4.5 0.98 0.53310397 | 35.99030909
Wireless Earbud Headphones | 4.5 0.16 0.000121762 | 0.008220287
Sport Wireless Earbud
Headphones 4.1 0.16 0.000121762 | 0.008220287
Table A2: Analysis of Raw Data
Department Number of Units of Products Per Mean Popularity
Department
Appliances 257 0.8389350550900967
Audio 50 0.7909613754768059

Page 35 of 66

Cameras 165 0.8028821374113138
Cell Phones 55 0.7798840389861017
Number
Computers & 444 0.814878007267299
Tablets
TV & Home 383 0.8321277481983057
Theater
Video Gaming 181 0.8275033824709389

Total Number of Units of Products: 1535
Global Average Popularity: 0.8213761744384138

Table A3: Simulation of Figure 1 Layout Results

Position of Appliances | Position of TV & Home Theatre Net Loss

7 1 4394.030666666669
6 1 4432.70676666667
5 1 4443.277566666663
4 1 4478.672877777776
7 6 4562.070699999998
6 2 4564.639266666681
5 6 4569.631855555563
6 4 4591.45647777777
5 7 4598.69213333332
7 2 4610.325922222224
6 7 4612.091100000018
7 3 4620.267588888878
4 2 4626.421377777772,
7 4 4627.433866666661
5 2 4663.19474444445
4 3 4667.191777777775

Page 36 of 66

7 5 4673.98428888888
5 4 4699.86371111112
6 3 4711.9135666666625
6 5 4734.085344444442
5 3 4736.36588888889
4 5 4740.461699999997
4 7 4746.716955555563
4 6 4771.911155555549
Table A4.1: Sensitivity Analysis for Crowd Avoidance
Value | Diagram Total
Loss
0 Net Loss: 27447 27447
Shelves in Grid Price Density Grid Shopper Density Grid

_‘I

|

-

=
55 Net Loss: 4114 4114

Shelves in Grid

Price Density Grid

-l

- Ilm-.! i

Shopper Density Grid

Page 37 of 66

10 Net Loss: 4152 4152

Shelves in Grid Shopper Density Grid

Price Density Grid

-l

Table A4.2: Sensitivity Analysis for Maximum Shelf Capacity

(Number of Products)
Value | Diagram Total
Loss
3 Net Loss: 4208 4208
Shelves in Grid Price Density Grid Shopper Density Grid
1

|

|

[|

|

=a

- n

|

|
250 Net Loss: 5495 5495

* Price Density Grid Shopper Density Grid
3

- o

= ¥

[]

= 20

==

- 3

=

|

Page 38 of 66

500 Net Loss: 5814 5814
Shelves in Grid Price Density Grid Shopper Density Grid
_‘I
- 10 10 |
|
- 70 4
=
=
|
|
Table A4.3: Sensitivity Analysis for Maximum Shelf Capacity
(Number of Products)
Value [Diagram Total
Loss
3 Net Loss: 4208 4208
Shelves in Grid Price Density Grid Shopper Density Grid
1
|
|
=
=
=
|
|
=]
250 Net Loss: 5495 5495
Price Density Grid Shopper Density Grid
_I
|
|
=
=
=
|
|
=]

Page 39 of 66

500 Net Loss: 5814 5814
Shelves in Grid) Price Density Grid Shopper Density Grid
1
[|
[|
|
-
[|
|
[|
]
Table A4.4: Sensitivity Analysis for Maximum Shelf Capacity (Size)
Value | Diagram Total
Loss
150 Net Loss: 4233 4233
Shelves in Grid Price Density Gri > Shopper Density Grid
__I
- . 10 10
N |
: I 20 20
- I a0 =0
]
- &
300 Net Loss: 4288 4288

e

Price Density Grid

20

Shopper Density Grid

i) EL] 0 a0

Page 40 of 66
500 Net Loss: 4233 4233
Shelves in Grid Price Density Gri Shopper Density Grid
1
- 10 10
=i
]
- 20 0
[]
- 30 =0
]
- &
Table A4.5: Sensitivity Analysis for Maximum Shopper Capacity (Size)
Value | Diagram Total
Loss
160 Net Loss: 4671 4671
Shelves in Grid Price Density Grid
1
- 10
|
[|
- 0
|
- E
[
- .
300 Net Loss: 4218 4218

-

Price Density Grid

40

Shopper Density Grid

Page 41 of 66

440 Net Loss: 4198 4198
Shelves in Grid g Price Density Grid Shopper Density Grid
1

- 10 10

|

[|

[] 20 20

[|

- 30 0

|

|

Table A4.5: Sensitivity Analysis for Mean Shopper Size
Value | Diagram Total
Loss
10 Net Loss: 801 790
Shelves in Grid Price Density Grid
L

- 10

|

[

- 20

[|

- W

[|

|
50 Net Loss: 4204 4204

-

Price Density Grid

20

Shopper Density Grid

Page 42 of 66

190

Shelves in Grid

=l

ol |

40 A8

Net Loss: 41839

Price Density Grid

Shopper Density Grid

41839

Page 43 of 66

Citations

1.

10.

11.

12.

13.

14.

15.

16.

"Absolute Discount.” Changingminds,
http://changingminds.org/disciplines/marketing/pricing/absolute_discount.htm.
Accessed March 20, 2020.

Rodner, Derek. "Percent Off vs. Dollar Discounts: The Psychology of Promotions."
Agilenceinc, https://blog.agilenceinc.com/percent-off-vs.-dollar-discounts-the-
psychology-of-promotions. Accessed March 20, 2020.

Simpson, Craig. "Do Percentages Sell Better than Dollar Amounts?.” Entrepreneur,
July 26, 2016, https://www.entrepreneur.com/article/278134. Accessed March 20,
2020.

Author, Become. "The behavioural economics of discounting, and why Kogan would
profit from discount deception.” Theconversation, May 29, 2019,
http://theconversation.com/the-behavioural-economics-of-discounting-and-why-
kogan-would-profit-from-discount-deception-117895. Accessed March 20, 2020.
"Semanticscholar." Semanticscholar,
https://pdfs.semanticscholar.org/88a5/540ea635b9bd7b4ef295fde4157a51c3d54a. pdf.
Accessed March 20, 2020.

"Kinetic theory of gases | physics | Britannica."” Britannica,
https://www.britannica.com/science/kinetic-theory-of-gases. Accessed March 20,
2020.

"Loss Aversion Theory." The Economics of Design | Interaction Design Foundation,
June 03, 2016, https://www.interaction-design.org/literature/article/loss-aversion-
theory-the-economics-of-design. Accessed March 20, 2020.

"5.1 Price Elasticity of Demand and Price Elasticity of Supply — Principles of
Economics.” Opentextbc.ca, https://opentextbc.ca/principlesofeconomics/chapter/5-1-
price-elasticity-of-demand-and-price-elasticity-of-supply/. Accessed March 20, 2020.
"o Statista.” The Statistics Portal for Market Data, Market Research and Market
Studies, https://www.statista.com/. Accessed March 20, 2020.

"Prospect Theory." Economics Help,
https://www.economicshelp.org/blog/glossary/prospect-theory/. Accessed March 20,
2020.

"Semanticscholar.” Semanticscholar,
https://pdfs.semanticscholar.org/88a5/540ea635b9bd7b4ef295fde4157a51c3d54a. pdf.
Accessed March 20, 2020.

"Normalized Data / Normalization." Statistics How To,
https://www.statisticshowto.datasciencecentral.com/normalized/ . Accessed March
20, 2020.

"A* Search Algorithm." GeeksforGeeks, https://www.geeksforgeeks.org/a-search-
algorithm/ . Accessed March 20, 2020.

"The Effect of Income on Appliances in U.S. Households-- 2001 RECS." Eia,
https://www.eia.gov/consumption/residential/data/2001/appliances/appliances.php.
Accessed March 20, 2020.

"o UK households: ownership of dishwashers 1994-2018 | Statista." Statista,
https://www.statista.com/statistics/289151/household-dishwashing-in-the-uk/.
Accessed March 20, 2020.

"e UK households: ownership of microwaves 1994-2018 | Statista." Statista,
https://www.statista.com/statistics/289155/household-microwave-penetration-in-the-
uk/. Accessed March 20, 2020.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

Page 44 of 66

"o Washing machine ownership 1970-2018 | Statista." Statista,
https://www.statista.com/statistics/289017/washing-machine-ownership-in-the-uk/.
Accessed March 20, 2020.

"Why Refrigerators Were So Slow to Catch On in China." The Atlantic, May 04,
2016, https://www.theatlantic.com/technology/archive/2016/05/why-refrigerators-
were-so-slow-to-catch-on-in-china/481029/. Accessed March 20, 2020.

"Why You Need More Than One Vacuum at Home." Consumer Reports, May 05,
2017, https://www.consumerreports.org/vacuum-cleaners/why-you-need-more-than-
one-vacuum-at-home/. Accessed March 20, 2020.

"Census." Census,
https://www.census.gov/content/dam/Census/library/publications/2017/acs/acs-
37.pdf. Accessed March 20, 2020.

"e U.S. households with PC/computer at home 2016 | Statista.” Statista,
https://www.statista.com/statistics/214641/household-adoption-rate-of-computer-in-
the-us-since-1997/. Accessed March 20, 2020.

"e U.S. households: digital camera ownership Q4 2010-Q4 2011 | Statista.” Statista,
https://www.statista.com/statistics/223710/household-digital-camera-ownership-in-
the-united-states/. Accessed March 20, 2020.

"o Tablet ownership among U.S. adults 2010-2019 | Statista.” Statista,
https://www.statista.com/statistics/756045/tablet-owners-among-us-adults/. Accessed
March 20, 2020.

"23% of U.S. broadband households own wireless earbuds, and 16% own wireless
headphones.” Parksassociates, https://www.parksassociates.com/blog/article/pr-
04112017. Accessed March 20, 2020.

"o Ownership of microwave ovens in Ireland 2003-2017 | Statista." Statista,
https://www.statista.com/statistics/656906/utility-ownership-home-development-
microwave-ovens-roi/. Accessed March 20, 2020.

"« How many people have access to a computer 2018 | Statista." Statista,
https://www.statista.com/statistics/748551/worldwide-households-with-computer/.
Accessed March 20, 2020.

"Blu-Ray Struggles in the Streaming Age | Fortune.” Fortune,
https://fortune.com/2016/01/08/blu-ray-struggles-in-the-streaming-age/. Accessed
March 20, 2020.

"How Many People Own Video Game Consoles?.” Marketing Charts,
https://www.marketingcharts.com/cross-media-and-traditional/videogames-
traditional-and-cross-channel-82362. Accessed March 20, 2020.

"o Electronic devices owned in UK households 2014 | Statista." Statista,
https://www.statista.com/statistics/386357/electronic-products-and-devices-owned-in-
households-in-the-united-kingdom/. Accessed March 20, 2020.

Rudolph, Stacey. "To What Extent Does Branding Affect Consumers' Purchasing
Decisions? [Infographics].” Business 2 Community,
https://www.business2community.com/infographics/extent-branding-affect-
consumers-purchasing-decisions-infographics-01325769 . Accessed March 20,
2020.

"Television ownership in private domestic households - CLOSER."
https://www.closer.ac.uk/data/television-ownership-in-domestic-households/.
Accessed March 20, 2020.

https://www.closer.ac.uk/data/television-ownership-in-domestic-households/

[1]:

[2]:

IMMC Layout Evaluation Code
March 20, 2020

1 IMMC 2020: Testing of Layouts

1.0.1 Importing Modules and Data

import pandas as pd

import copy

import re

import random

import math, statistics

import numpy as np

import progressbar

import gec

import matpletlib.pyplot as plt
from pprint import pprint

median_income = 9733/365
loss_aversion_coefficient = 2

max_shelf capacity = 150
max_shopper_capacity = 300
units_per_object = 1

max_pdt_per_shelf = 2

pdts_per_shopper = 2

crowd_avoidance = 0.5

mean_shopper_size=50 #mean size of shopper

pdt_csv_data = pd.read_csv("StoreData_IMMC_CSV.csv")
#print (pdt_csv_data. head())

def sigmoid(x):
return 1 / (1 + math.exp(-x))

Page 45 of 66

1.1 Determining the Popularity of Product

1.1.1 Impact of Discount on Popularity

[3]: # Traditional Econs Approach
def gql_over_qO0(p0, pl, percentage_usage):
x = (p0 - pl)#(percentage_usage/median_income)
return {(math.exp(x))

Behaviouwral Econs Approach
def prospect_utility(x):
if x > 0:
return(math.log(x+1))
else:
return(-loss_aversion_coefficient * math.log(-x + 1))

def increase_utility(p0, pl):
return(prospect_utility{(p0 - pl))

Helper Variables

max_increase_utility = increase_utility(3329.99, 2199.99)
min_increase_utility 0

max_ql_over_q0 = gl_over_q0(3329.89, 2184.99, 1)
min_qgl_over_qo = 1

Combined Effect [Between 0 and 1]

def popularity_due_to_discount(p0, pl, percentage_usage):
traditional _econs_adjusted = (gl_over_q0(p0, pi,,

percentage_usage)-min_ql_over_qo) /max_ql_over_q0
behavioural_econs_adjusted = (increase_utility(p0,

—pl)-min_increase_utility)/max_increase_utility

total_adjusted = statistics.mean([traditional_econs_adjusted,
—behavioural econs_adjusted])
return(total_adjusted)

1.1.2 Effect of Loss Adversion on Popularity

[4]: # [Between 0 and 1]
def popularity_due_to_loss_aversion(qty):
return{math.exp(-qty/loss_aversion_coefficient))

Page 46 of 66

Page 47 of 66

1.1.3 Efects of Saliency Bias on Popularity (TO DO)

[6]: def popularity_due_to_saliency_bias{(size, qty):
return sigmoid(size*qty)

1.1.4 Effects of Ratings on Popularity

[6]: # [Between 0 and 1]
def popularity_due_to_rating(pdt_rating, brand rating):
rav_brand = (0.8#pdt_rating + 0.2+brand_rating)
return(rav_brand/5)

1.2 Creating Product Class and List

[7]1: class product:
Popularity Coefficients
pop_loss_adversion_coefficient = 0.44
pop_saliency_coefficient = 0.6
pop_rating coefficient = 0.5

Raw Data
def __init__(self, index, name, department, product_category, product_type,
—~brand, initial_price, discounted_price, gty, customer_rating,
—brand_rating=5, percentage_usage=0.5, size=20):
self.name = name
self.index = index
self .department = department
self.product_category = product_category
self .product_type = product_type
self.brand = brand
self.initial price = initial_price
self.discounted_price = discounted_price
self.qty = qty
self.customer_rating = customer_rating
self . brand_rating = brand_rating
self.percentage_usage = percentage_usage
self.size = size

self .popularity = 0
Processed Data
def set_popularity(self):

discount_factor = popularity_due_to_discount(self.initial_price, self.
—discounted_price, self.percentage_usage)

Page 48 of 66

loss_adversion_factor = popularity_due_to_leoss_aversion(self.qty)

saliency_factor = popularity_due_to_saliency_bias(self.size, self.qty)

rating_factor = popularity_due_to_rating(self.custeomer_rating, self.
—brand_rating)

initial_popularity = self.
—pop_loss_adversion_coefficient+loss_adversion_factor + self.
—pop_saliency_coefficient*saliency_factor + self.
—pop_rating_coefficient*rating factor

self.popularity = sigmoid(initial_popularity + discount_facter)

[8]: | # Populating the Product List
pdt_list = []
pdt_counter = 0
for index, row in pdt_csv_data.iterrows():

total_qty = row["gty"]
unit_size = row["index_size"]
while True:

cur_gty = min(min(int{max_shelf capacity/unit_size), total_gty),,
—units_per_object)

print ("indez", index, "depariment", row["department”], "gty",,
—cur_qgty, "net_size", cur_ gtytunit_size)

total_qty -= cur_qgty

cur_pdt = product{index, row["name"], row["department"],
—row["product_category"], row["product_type"], row["brand"l,,
—row["initial_price"], row["discounted_price"], cur_qty,y.
—row["customer_rating"], size=unit_size, brand_rating=row["brand_rating"],,
—percentage_usage=row["percentage_usage"])

cur_pdt.set_popularity()

pdt_counter += 1
pdt_list.append(cur_pdt)

if total_gty <=0:
break

print("pdt_list len", len{pdt_list))
print("Number of products", pdt_counter)

pdt_list len 1535
Number of products 1535

Page 49 of 66

department_popularities = {
"Appliances": 0,
"Audio": 0,
"Cameras": 0,
"Cell Phones": 0,
"Computers&Tablets": 0,
"TV&Home Theater": 0O,
"Video Gaming": 0

}

department_qty = {
"Appliances": 0,
"fudio": 0O,
"Cameras": 0,
"Cell Phones": 0,
"Computers&Tablets": 0,
"TV&Home Theater": 0,
"Video Gaming": 0

total_objects = 0
for department, total_pop in department_popularities.items():
number_of_objects = 0
for pdt in pdt_list:
if pdt.department == department:
nunber_of_ocbjects += 1
total_objects += number_of_ocbjects
print{"Department:", department, "Number of OUbjects", number_of_objects)

print("Total Number of Objects", len(pdt_list))
G oo ")

total_pop = 0

for pdt in pdt_list:
department_popularities[pdt.department]+= pdt.popularity*pdt.qty
department_qty[pdt.department]+= pdt.qty
total_pop += pdt.popularity*pdt.qty

for department, pop in department_popularities.items():
print{("Department:", department, "Average Popularity", pop/

—.department_qty[department])

print("Global Average Popularity:", total_pop/len(pdt_list))

Department: Appliances Number of Objects 2&7
Department: Audic Number of Objects 50
Department: Cameras Number of Objects 165

[10]:

[10]:

[11]:

Department: Cell FPhones Number of Objects 556

Department: ComputerskTablets Number of Objects 444

Department: TV&Home Theater Number of Objects 383

Department: Video Gaming Number of Objects 181

Total Number of Objects 1535

Department: Appliances Average Popularity 0.85382350550900967
Department: Audioc Average Popularity 0.7909613754768059
Department: Cameras Average Popularity 0.8028821374113138
Department: Cell Phones Average Popularity 0.7798840389861017
Department: Computers&Tablets Average Popularity 0.81487V8007267299
Department: TV&Home Theater Average Popularity 0.8321277481983057
Department: Video Gaming Average Popularity 0.8275033824709389
Global Average Popularity: 0.8213761744384271

pdt_list[4] .index

0

1.3 Creating Shelf Class and Layout Object

class shelf:
Class Variables

def __init__{(self, department):
self.pdts = []
self.pdt_set = set()
self .department = department
self.cur_capacity = 0

def add_pdt(self, pdt):
Check Department
print ("Adding Product”)
print (" product_department”, pdt.department)
print (" shelf_department”, self.department)
if pdt.department != self.department:
return -1

If shelf can accomedate the product

if self.cur_capacity + pdt.size*pdt.qty <= max_shelf capacity:

self.cur_capacity += pdt.size*pdt.qgty
self.pdts.append(pdt)
self.pdt_set.add(pdt.index)

return 0

If shelf is full
return -1

Page 50 of 66

Page 51 of 66

[12]: class layout:

def __init__{self, grid, counter, entrance, exit, shelf list=[],,
—pdt_list=[1):
self.counter = counter
self.value_of_goods_bought = 0
self.shopper_size = 0
self.entrance = entrance
self.exit = exit

Grid 45 a 2d matriz where shelves are 1 indezed
self.grid = copy.deepcopy(grid)
self.shelf_list = copy.deepcopy(shelf list)

A% Grid is a grid where shelves are labelled as I
self.a_star_grid = copy.deepcopy(grid)
for i in range(len(self.a_star_grid)):
for j in range(len(self.a_star_grid)):
if self.a_star_grid[i] [j] > 1:
self.a_star_grid[i] [j] = 1

Shopper Density Grid is a grid to record the density of shoppers;,
—shelves have a density of 99
self .shopper_density_grid = copy.deepcopy(self.a_star_grid)
for i in range(len(self.shopper_density_grid)):
for j in range(len(self.shopper_density_grid)):
if self.shopper_density_grid[i] [j] ==
self.shopper_density_grid[i] [j] = -1

Price Density Grid is a grid to record to value of products the
—customers are carrying at particular locations
self .price_density_grid = copy.deepcopy(grid)
for i in range(len(self.price_density_grid)):
for j in range(len(self.price_density_grid)):
if self.price_density_grid[i] [j] > 0:
self.price_density_grid[i] [j] = 0

pdt_list contains the products that exists somewhere within the layout
self.pdt_list = copy.deepcopy(pdt_list)

A_Star Performs a simulation of a person walking within the layout from,
—init to goal

A_Star Returns a list of nodes visited on the path

Coordinates are written as [y,z] with [0,0] being the upper left hand,

— COThET

£

def a_star(self, init, goal):
grid = copy.deepcopy(self.a_star_grid)
cost = 1

the cost map which pushes the path closer to the goal

heuristic = [[0 for row in range(len(grid[0]))] for col inm,
—range(len(grid))]
for 4 in range(len(grid)):
for g in range(len(grid[0])):
heuristic[il[7] = abs(i - goal[0]) + abs(j - geal[1])
if grid[i] [5] == 1:
heuristic (4] [§] = 99 # added extra penalty in the,

#* O OB R R

—heuristic map

heuristic = [[0 for row in range(len{grid[0]))] for col in;

—range{len{gridl}}]

for i in range(len{grid)):
for j in range(len(grid[0])):
heuristic[i] [j] = abs(i - goall[0]) + abs(j - goall[i])
if grid[i] [j] == 1:
heuristic[i] [j] = 9999999 # added extra penalty in the,

—heuristic map

else:

heuristic[i] [j] crowd_avoidance * self.

—+shopper_density_grid[i] [j]

the actions we can take

delta = [[-1, 0], [0, -1], [1, 0], [0, 1]1] # go up # go left # go,

—down # go right

function to search the path
def search(grid, init, goal, cost, heuristic):

closed = [

[0 for col in range(len(grid[0]))] for row in range(len(grid))

1 # the reference grid
closed[init [0]] [init[1]] = 1
action = [

[0 for col in range(len(grid[0])})] for row in range(len{grid))

Page 52 of 66

Page 53 of 66

] # the actien grid

init[0]

init[1]

=0

= g + heuristic[init[0]] [init[0]]
cell = [[f, g, x, y]]

g o K

found = False # flag that is set when search is complete
resign = False # flag set if we can't find exmpand

while not found and not resign:
if len(cell) == 0:
return "FAIL"
else:
cell.sort() # to choose the least costliest action so as,
—to move closer to the goal
cell.reverse()
next = cell.pop()
% = next[2]
vy = next[3]
g = next[i]

if x == goal[0] and y == goalll]:
found = True
else:
for i in range(len(delta)): # to try out different,
—valid actions
%2 = x + delta[i] [0]
y2 = y + deltali] [1]
if %2 >= 0 and x2 < len(grid) and y2 >= 0 and y2 <,
~len(grid[0]):
if closed[x2] [y2] == 0 and grid[x2] [y2] == 0:
g2 = g + cost
2 = g2 + heuristic[x2] [y2]
cell.append([f2, g2, x2, y2]1)
closed[x2] [y2] = 1
action[x2] [¥2] = i

invpath = []
x = goal[0]
y = goal[1]

invpath.append([x, y]) # we get the reverse path from here
while x != init[0] or y != init[1]:

x2 = x - deltalaction[x][y]] [0]

y2 = y - deltalaction[x] [y]] [1]

x = %2

y = y2

-

Page 54 of 66

invpath.append([x, 1)

path = []
for i in range(len(invpath)):
path.append(invpath[len(invpath) - 1 - il)

print ("ACTION MAP")
for i in range(len(action)):
print (action(i])

return path
return search(grid, init, pgoal, cost, heuristic)

Simulates Choice of Object to Buy and Deletes that Object from Object List
def choose_pdt(self):
if len(self.pdt_list) == 0:
print("RAN OUT OF ITEMS IN SHOP")
return -1
self.pdt_list.sort{key=lambda x: x.popularity, reverse=True)
index = min(random.randint(0, 5), len(self.pdt_list) -1)
chosen_pdt = copy.deepcopy(self.pdt_list[index])
return chosen_pdt

def delete_pdt(self, product_index):
for i in range(len(self.pdt_list)):
if self.pdt_list[i].index == product_index:

if self.pdt_list[i].qty == 1:
self.pdt_list.pop(i)
alse:
self.pdt_list[i].qty = 1

break
return

Find Product in Sheleves
def find_shelf(self, chosen_pdt_index):
for shelf_index, shelf in enumerate(self.shelf list):
print ("Checking shelf", shelf_ indez)
if chosen_pdt_index in shelf.pdt_set:
chosen_shelf index = shelf index
return chosen_shelf index

def delete_pdt_from_shelf{self, chosen_pdt_index, shelf_index):

Remove product from shelf
shelf = self.shelf list[shelf_index]

10

Page 55 of 66

for i in range(len(shelf.pdts}):
if shelf.pdts[i].index == chosen_pdt_index:
print ("QTY of pdt", shelf.pdts{i].qty)
if shelf.pdts[i].qty <= 1:
del shelf.pdts[i]

else:
shelf.pdts[i] .qty-= 1
shelf.pdts[i] .set_popularity()
break

last_product_of_type = True
for j in range(len(shelf.pdts)):
if shelf.pdts[j].index == chosen_pdt_index:
last_product_of_type = False
print ("HECCRECHIHOHEHCHERHHOHOROHEROHEN e 0w™)
break
if last_product_of_type:
shelf.pdt_set.discard(chosen_pdt_index)
return

def walk(self, init, goal, cur_size, cur_price):
def fn(y,x):

if x »>= 0 and x < len(self.grid) and y >= 0 and y < len(self.
—grid[0]):
if goal == self.exit:
[y,x] = [goall[0], goal[1]]
path = self.a_star(init, [y.x])
if path == "FAIL":
z=0
return -1
else:
for cell in path:
self . shopper_density_grid[cell[0]] [cell[1]] += cur_size
self .price_density_grid[cell[0]] [cell[1]] += cur_price
cur_pos = [y,x]
return cur_pos
else:
return -1

Conduct 4%

delta = [(-1,0), (1,0}, (0,-1}, (0,1)]
random.shuffle (delta)

for d in delta:

11

Page 56 of 66

y = goal[0]+d[0]
x = goal[i]l+d[1]
new_pos = fn(y,x)

if new_pos != -1:
return new_pos

If the shelf iz net reachable, try te each an adjacent shelf
for d in delta:
for d2 in delta:
y = goal[0]+d[0]+d2[0]
x = goal[1]+d[1]+d2[1]
new_pos = fn(y,x)
if new_pos != -1:
return new_pos

Simulates a person entering shop

def new_shopper(self):
max_number_of_products = pdts_per_shopper
max_size = max_shopper_capacity

cur_number_of_pdt = 0
cur_size = random.randint(mean_shopper_size-10, mean_shopper_size+10)
cur_price = 0

Random Entrance Square
cur_pos = random.choice(self.entrance)

if len(self.pdt_list) == 0:
return -1
while cur_size < max_size and cur_number_of pdt < 3 and len(self.
—pdt_list) > 0:

Choose what Product to Buy

chosen_pdt = self.choose_pdt()

if cur_size + chosen_pdt.size > max_size:
break

Find Shelf Index
chosen_shelf_index = self.find_shelf (chosen_pdt.index)

Find Location of Shelf
for y in range(len(self.grid)):
for x in range(len(self.grid[0])):
if self.grid[y] [x] == chosen_shelf_index:
shelf_location = (y,x)

Page 57 of 66

Walk from cur_pos to ancther shelf while tracking the movement of,

—~the shopper

cur_pos = self.walk(cur_pos, shelf_ location, cur_size, cur_price)
self.delete_pdt{chosen_pdt.index)

self .delete_pdt_from_shelf (chosen_pdt.index, chosen_shelf index)
self.value_of_goods_bought += chosen_pdt.discounted_price
cur_number_of _pdt +=1

cur_price += chosen_pdt.discounted_price

cur_size += chosen _pdt.size

Walk to Counter
cur_pos = self.walk(cur_pos, random.choice(self.counter), cur_size,,

—.cur_price)

cur_pos = self.walk(ecur_pos, random.choice(self.exit), cur_size, 0)
self.shopper_size += cur_size

return 0

Get adjusted Price Grid

def

def

get_price_grid(self):
total_price = 0
for i in range(len(self.price_density_grid)):
for j in range(len(self.price_density_grid)):
total_price += self.price_density_gridl[i] [j]

adjusted_grid = copy.deepcopy(=elf.price_density_grid)
for i in range(len(self.price_density_grid)):
for j in range(len(self.price_density_grid)):
adjusted_grid[i] [j]1 #= (self.value_of_goods_bought/total_price)
adjusted_grid[i] [j] = int(adjusted_grid[i] [j1)

return adjusted_grid

get_shopper_grid(self):
total_size = 0
for i in range(len{(self.shopper_density_grid)):
for j in range(len(self.shopper_density_grid)):
total_size += self.shopper_density_grid[i] [j]

adjusted_grid = copy.deepcopy(self.shopper_density_grid)
for i in range(len(self.shopper_density_grid)):
for j in range(len(self.shopper_density_grid)):
adjusted_grid[i] [j] #= (self.shopper_size/total_size)
adjusted_grid[i]l [j1 = int(adjusted_grid[i]l[j1)

13

[13]:

Page 58 of 66

return adjusted_grid

Collision Damage / Self-Drops

def loss(self, shopper_density, price_density):
p_ceollisien = (min(shopper_density, 300)) **2 / (300%300)
return p_collision*price_density

def total loss(self):
shopper_density_grid = self.get_shopper_grid()
price_density_grid = self.get_price_grid()

net_loss = 0
for y in range(len(shopper_density_grid)):
for x in range(len(shopper_density_grid)):
net_loss += self.loss(shopper_density_grid[y] [x],,
—price_density_grid[y] [x])

return net_loss

2 Simulate Layout in Figure 1

2.1 Simulation Cells

template="""

idddddddddddddidddddiiiidsddiniiitddidtintianaii
00
0gg00000000000000000000000000000000000££££££0001
0gg000000000000000000000000000000000000000££000£
0gg000000000000000000000000000000000000000££000£
0gg00dd0000eeeeeell000eeeeee00000000000000££0001
0gg00dd0000eeeeeell000eeeeee00000000000000££0001
0gg00dda00%
0gg00ddo000 000000 0000cccc000000001
0gg00ddo000 000000 0000cccc000££0001

0gg00dd00000000000000000000000000000000000££0001
0gg00dd0000eeeeeell0000eeeeeeeel0000000000££0001

0ggl0ddo000 000000 0000ccecc000££0001
0ggl0dd0000000000000000000000000000cccc000000001
0ggl0ddo000 000000 0000000000000000%

0gg00000000eeeeee00000ceeeeeeel0000000000£f 0001
0gg00000000000000000000000000000000cccc000££000f
Ogg00000000 000000 0000cccc000EE000L
Ogg00000000 000000 00000000000££000£
O0gg001

14

00000 0000000¢cccc00000000f

0gg00bb0000
0gg00bb0000

00000 0000000ccccQ00f£000f

0gg00bb0000
0gg00bb0000
0gg00bb0000
0ggl0bb0000
0ggl0bbl0aa
0ggl0bbl0aa
00000bb00aa
00000bb00aa

000000000aa
000000000aa
00000000000
00000000000
00000000000
00000gg00aa
00000gg00aa
00000gg00aa
00000gg00aa
00000000000

00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
00000000000

departments

def genesrat
if a ==

0000000000000000000000000000000££0001
0000000000000000000000000000000££0001
000000000000000000000000ccccQ00E£0001
000000000000000000000000¢ccccGO000000E
002a00aa00aa00aa00aalt000000000000000f
002a00aa00aa00aa00aal0000000000££0001
00aallaa00aallaal0aad000cccc000L£0001
00aallaa00aallaal0aad000cccc000L£0001

0022a002a00aa002a00aa00000000000££000f
0022a002a00aa002a00aa0000000000000000f
000000000000000000000000cccc00000000f
000000000000000000000000cccc00000000£
000000000000000000000000000000000000£
00aa00aa00aa00aa00aa0000000000000000f
00aallaal0aallaal0aal000ggcc00000000f
00aallaal0aallaal0aal000ggcc00000000f
00aa00aa00aa00aal0aab000000000000000£
000000000000000000000000000000000000£

0000000000000000000000000000000000001
0000000000000000000000000000000000001
0000000000000000000000000000000000001
0000000000000000000000000000G0000000£
0000000000000000000000000000G00000000
0000000000000000000000000000000000000
0000000000000000000000000000000000000
0000000000000000000000000000000000000

= [nan s ngn ’rlcn s nagn ,nerl s np ’rlgn]

e_layout(a,f):

return ""

index =

department_used = [0,0,0,0,0,0,0,0] # Whether the number has been used

departm
print{"
layout
layout
layout

for i i
id

2

ent_used[a] =department_used[f] = 1
A", a, "F:",D)

= (template)

= layout.replace(str(a), "a"

= layout.replace(str(f), "f")
n range(1,8):

not department_used[i]:
print("replacing", i, "with", departments[index])

15

Page 59 of 66

Page 60 of 66

layout = layout.replace(str(i), departments[index])
department_used[i] = 1
index += 1

return layout

for a in range(1,8):
for b in range(1,8):
print (generate_layout (a,b))

[14]: def split_row(word):
return [char for char in word]

def evaluate_layout(test_layout, counters = [(40, 6),(40, 7),(40, 8),(40,,
—8),(40, 10}, (40, 11), (40,12), (40,13)]):

Parse Layout

test_layout = test_layout.replace('‘\n\n', '\n')

test_layout = test_layout.strip("\n")

test_layout = test_layout.split("\n")
for i in range(len(test_layout)):
test_layout[i] = split_row(test_layout[i])

department_dictionary = {

"a": "Appliances",

ribll : l‘&udioll

"¢": "Cameras"

"d": "Cell Phones",

"e": "ComputerskTablets",

"fr: "TVi&Home Theater",
"g": "Video Gaming",
i
shelf _list = [shelf("")]
shelf_counter = 1
for (letter, department_name) in department_dictionary.items():
for y in range(len{test_layout)):
for x in range(len{test_layout)):
if str{test_layout[y] [x]) == letter:
print ("found shelf", shelf_counter, "department:”,,
—department_name)
test_layout [y] [x] = str(shelf_counter)
shelf _counter += 1
shelf_list.append(shelf(department_name))

for y in range(len{test_layout)}:
for x in range(len{test_layout)):
if not str(test_layout[y] [x]).isdigit():
test_layout[y] [x] = str(shelf_counter)

16

Page 61 of 66

shelf counter +=1
test_layout[y] [x] = int(test_layout[y] [x])

max_shelf index = shelf counter

Put The Objects in Shelwes
pdt_index = 0
pdt_list.sort(key=lambda x: x.department)

for shelf index in range(l, max_shelf index):
print ("\nShelf Index: ", shelf index)
cur_shelf = shelf list[shelf index]
print ("Shelf Department —- ", cur_shelf.department)

for i in range(max_pdt_per_shelf):
next_pdt = copy.deepcopy(pdt_list[pdt_index])
if next_pdt.department == "Appliances" and cur_shelf.department !=
—"Appliances":
print("Insufficient Appliance Space")
return 9999999
print ("Products Department”, newxt_pdt.department)
if cur_shelf.add_pdt(next_pdt) != -1:
print ("Added pdt id", next_pdt.index)
pdt_index += 1
if pdt_index == len(pdt_list):
break
else:
break
print ("Products in shelf" , shelf_indexz, ":", cur_shelf.pdt_set)

if pdt_index == len(pdt_list}:
if next_pdt.department != "Video Gaming":
print ("ERROR INSUFFICIENT SHELVES")
return 9999999

print("--- Finished All Products with", shelf_index, "out of",
—max_shelf index, "shelves —— ")
break

Set up Object

Test Layout with Model

counters = [(40, 6),(40, 77,40, 8),(40, 92,040, 10}, (40, 11), (40,12),,
= (40,1321

entrances = [[47,30], [47,28], [47,28]]

exits = [[48,35],[48,36],[48,37]]

17

Page 62 of 66

test_layout_object = layout(test_layout , counters, entrances, exits,,
—.shelf_list, pdt_list)
print ("Number of products in layout:”, len(test_layout_cbject.pdt_list))

Do Simulation
ge.collect()
for i in progressbar.progressbar(rangs(600)):

try:
shopper_density_grid = test_layout_object.new_shopper()
if shopper_density_grid == -1:
print("Exhausted Shop with approximately", i, "shoppers")
break
except:
pass

Get Results
price_density_grid = test_layout_object.get_price_grid()
shopper_density_grid = test_layout_object.get_shopper_grid()

print("Shopper Density SD:", np.std(shopper_density_grid, axis=(0,1)))
print("Price Density SD:", np.std(price_density_grid, axis=(0,1)))

net_loss = test_layout_object.total_loss()
print("Damage Level:", net_loss)

shelf_grid = copy.deepcopy(test_layout_object.a_star_grid)
for counter in counters:
shelf_grid[counter[0]] [counter[1]] = 0.7
for entrance in entrances:
shelf grid[entrance[0]] [entrance[1]] = 0.5
for exit in exits:
shelf_grid[exit[0]-1][exit[1]1] = 0.5
return (net_loss, price_density_grid, shopper_density_grid, shelf_grid)

Rotate Departments A and F Around the Various Positions
min_leoss = 999999
min_a_f = (9,9)

results = []
for a in range(1,8):

for £ in range(1,8):
print ("#EHEHEHE R AR R Y "TESTING A
—F", a, f, "#HEERHEEEHEERHHR R HREEER R)
if a ==
continue
cur_loss = evaluate_layout{generate_layout(a,f})

18

[15] :

if cur_loss == 9999099;
continue

cur_loss = cur_loss[C]
min_leoss = min(cur_loss, min_loss)
if min_loss == cur_loss:

min_a_f = (a,f)

print("New Best :)")

results.append((cur_loss, (a,f)}))

print("Best a,f", min_a_f)
results.sort()
print("Results", results)

3 Simulate Our Layout

our_layout='""

idddsdtdssdbddddddiddbbbdssddbnddssdtbidibddstiini
00
0gg00000000000000000000000000000000000££££££000£
0gg000000000000000000000000000000000000000££000£
0gg000000000000000000000000000000000000000££0001
0ggd0dd0000 00000 00000000000000££0001
0ggd0dd0000 00000 00000000000000££0001
0gg00dd00£
0ggl0dd0000eeeeeellNN00eecceeeeell00cccc00000000f
0ggl0dd0000eeeeeellNN00eecceceeell00cccc000E£000f

0gg00dd00000000000000000000000000000000000££0001

0ggd0dd0000 000000 00000000000££000%
0gg0ddo000 000000eee 0000cccc00E££000f
0gg00dd0000000000000000000000000000cccc000000001
0gg00ddoooo 000000 eee(0000000000000000%
Ogg00000000 000000 eee00000000000££0001
Ogg00000000000000000000000000000000cccc000££0001
0ggl0000000 000000 0000cccc00fE000f
0ggl0000000 000000 00000000000££000f

0gg001

0gg00bb0000eeeeeell000eeeeee0000000cccc000000001
0gg00bb0000eeeeeell000eeeeee0000000ccccQ00L£0001
0gg00bb00000000000000000000000000000000000££000
0gg00bb00000000000000000000000000000000000££0001
0ggl0bb0000000000000000000000000000cccc00f£0001
0ggl0bb0000000000000000000000000000cccc00000001

19

Page 63 of 66

[18] :

0ggl0bbl0aal00aallaal0aallaal0aadl00000000000000f
0ggl0bbl0aa00aallaal0aallaal0aadl000000000££000f
00000bb00aal0aal0aal0aal0aal0aa0000cccc000E£0001
00000bb00aal0aal0aal0aal0aal0aa0000cccc000E£0001

0000000002200220022002200a20022a00000000000££0001
000000000220022002a002200a2002a0000000000000000%
00000000000000000000000000000000000¢cccc00000000L
00000000000000000000000000000000000¢cccc00000000£
000£
00000gg00aa00aa0aad0aal0aad0aal000000000000000£
00000gg002a002a00aa00aa002a00aa0000ggcc00000000f
00000gg002a002a00aa00aa002a00aa0000ggcc00000000f
00000gg00aalfaad0aadfaal0aalfaa0dd00000000000000f
000£

000F
000F
000F
000£
00
00
00
00

a=7
f=1

counters = [(44, 6),(44, T), (44, 8),044, 9),044, 100, (44, 11), (44,12),.

—(44,13)] # Basic Counters

counters = [[44, 13],[44, 14],[44, 15],[44, 16],[44, 17],

—+[44,20]] # Optimised Counters

counters = [(44, 6), (44, T, (44, 8), (44, 9),044, 100, (44, 11D, (44,12),,
(44, 13), [42, 251, [42, 26],[42, 271, [42, 28], [42, 291, [42,30], [42,31]] #,

—~Double Position Counters

net_loss, price_density_grid, shopper_density_grid, shelf_grid =

—evaluate_layout(our_layout,counters=counters)

fig=plt.figure(figsize=(18, 6.5), dpi= 200, facecolor='w', edgecolor='k'}
plt.suptitle(”d: "+ str(a) + " [F: "+ str(f), fontsize=30)
plt.suptitle("Net Less: " + str(int(net_less)), fontsize=30)

plt.subplot(l, 3, 1)

plt.title("Shelves in Grid",fontsize=20)
plt.inshow(shelf grid}

plt.subplot{(i, 3, 2)

plt.title("Price Density Grid",fontsize=20)

20

Page 64 of 66

Page 65 of 66

plt.imshow(price_density_grid)

plt.subplot(l, 3, 3)

plt.title("Shopper Density Grid",fontsize=20)
plt.imshow (Shopper_density_grid)

plt.figure(num=None, figsize=(100, 100), dpi=200, facecolor='w', edgecolor='k')

plt.show(}

N/AY (0 of 600) | | Elapsed Time: 0:00:00 ETA: --:i--:--

——— Finished All Products with 577 out of 581 shelves ——

85% (513 of 600) |#i#sssihtpitdiins | Elapsed Time: 0:00:37 ETA: 0:00:05

Exhausted Shop with approximately 515 shoppers
Shopper Density SD: 9.191316869807244

Price Density SD: 311.266008371722

Damage Level: 4185.841011111112b

Net Loss: 4185

Shelves in Grid Price Density Grid Shopper Density Grid

-

<Figure size S90000x20000 with 0 Axes>

3.1 Sensitivity Test Helper Code

[1: # Change Single Variables and Graph Output
x = np.arange(160, 480, 30)
y =0

print ("Number of Samples,", len(x))

counters = [(44, 6),(44, 7),(44, 8),(44, 9),(44, 10), (44, 11), (44,12),,
—(44,13)]

21

Page 66 of 66

for x_wval in x:

print{"### Testing", x_val, "###")

max_shopper_capacity = x_val

net_loss, price_density_grid, shopper_density_grid, shelf grid =
—evaluate_layout(our_layout,counters=counters)

v.append(net_loss)
¥ = np.array(y)

Specific for Counters
x = np.arange(0, 4, 1}
y =10

raw_counters = [[44, 13],[44, 14],[44, 15],[44, 17], [44, 18], [44,19].,
—[44,20],[42, 13],[42, 14],[42, 15],[42, 17], [42, 18], [42,19], [42,20]]

for x_wval in x:
print("### Testing", x_val, "###")
counters = copy.deepcopy(raw_counters)

for i in range(x_val):
last = copy.deepcopy(counters[len(counters)-1])
last[1] += 1
counters.append(last)
print{"Counters",counters}
net_loss, price_density_grid, shopper_density_grid, shelf grid =
—evaluate_layout (our_layout,counters=counters)
y.append(net_loss)
y = np.array(y)

plt.figure(num=None, figsize=(12, 8), dpi=80, facecolor='w', edgecolor='k')
plt.rc('xtick', labelsize=12) # fontsize of the tick labels
plt.rc('ytick', labelsize=12)

plt.xlabel ("Counter Number on Right", fontsize=20)

plt.ylabel("Net Leoss", fontsize=20)

plt.plot(x,y)

plt.show()

	Section 1: Introduction
	Section 2: Types of damage to products
	2.1. Damage to entire shelves of products from collisions of shoppers with shelves
	2.2. Damage to adjacent products when grabbing products from shelves
	2.3. Damage due to collision between shoppers carrying products
	2.4. Damage due to dropping products due to crowd and rush
	2.5. Total damage

	Section 3: Factors affecting popularity of products
	3.1. Net rating of product
	3.2. Saliency bias
	3.3. Loss aversion factor
	3.4. Impact of discount
	3.5. Relative popularities of products

	Section 4: Description of store layout factors
	4.1. Number of shelves
	4.2. Location of the most popular departments
	4.3. Type of Shelves
	4.4. The location of cashier counters

	Section 5: Model and Results analysis
	5.1. Assumptions
	5.2. Description of model
	5.3. Simulation and results analysis

	Section 6: Generation of new floor plan
	6.1. Minimising number of empty shelves
	6.2. Optimal arrangement of departments
	6.3. Optimal arrangement of shelves
	6.4. Optimal position of cashier counters

	Section 7: Sensitivity Analysis
	7.1. Crowd avoidance of shoppers
	7.2. Maximum shelf capacity – number of products
	7.3. Maximum shelf capacity – size on shelf
	7.4. Shopper carrying capacity
	7.5. Shopper size

	Conclusion
	Letter
	Floor Plan Diagrams
	Annex
	Citations

