
Brandon Tang’s 4 Week Internship at DSTA 2019

Analysis of Syslink E1200v2 Router

Section 0: Overview of Internship Work

During this internship, I look at various hardware debugging interfaces and attempt the
3 Cs of “connect”, “communicate”, “control” on a practise target, an old network router.

Section 1.0: External Information Gathering

To understand the avenues of gaining access to the router, we need to first learn as
much about it as possible. The most basic method of which is to do external analysis
without dissassembly of the router.

There are 3 main avenues of external information gathering of a router.

1. Physical examination of the router and its box (if provided), including whatever
labels and printing are on the router

2. Analysis of the administrative webpage of the router, found by connecting to its
wifi and going to the ip address of the router.

3. Online searching for information about the router. Main areas to search are on
Google, FCC.io, the syslink support website.

Information from Physical Examination
Brand: Cisco
Model: Linksys E1200 (v2)
Serial Number: 10820C63242832
MAC Address: 20AA4B3CCEB4
Router Pin for WPS : 8722-7482

FCC ID: Q87-E1200V2
IC: 3839A-E1200V2

Information from Router Admin Page
http://192.168.1.1/
Username: admin
Password: admin

Firmware Version: 2.0.01 build 1 Nov 10, 2011
Firmware Verification: f7fffb6734c2effc66bd181bb3544c31
Internet MAC Address: 20:AA:4B:3C:CE:B4
Device Name: Cisco42832

http://192.168.1.1/

Router IP address: 192.168.1.1
Subnet Mask: 255.255.255.0
IPv6 Link-Local Address: fe80::22aa:4bff:fe3c:ceb3

Network Name (SSID): Cisco42832
Channel Width: 20MHz
Channel: 1

Information from Online Sources
Firmware Download:
https://www.linksys.com/us/support-article?articleNum=148523
User Manual:
https://downloads.linksys.com/downloads/userguide/E_Series_UG_E900Rev_3425-
01486_Web.pdf

Internal Photos
https://fccid.io/Q87-E1200V2/Internal-Photos/Internal-Photos-1564096

Information about the internals
http://en.techinfodepot.shoutwiki.com/wiki/Linksys_E1200_v2

Section 1.1: Internal Information Gathering

To actually get into the internals of the device, we need to first disassemble it. However,
we need to be careful to not break or cut into the printed circuit board (PCB) while doing
so. Furthermore, it is good practise to keep the parts in a state where they can be
reassembled.

We refered to the internal photos from FCC.io (refer to Fig 1) to know where the position
of the screws and the PCB was. This aided us in disassembling the router more
efficiently and without fear of damaging the internals.

https://www.linksys.com/us/support-article?articleNum=148523
https://downloads.linksys.com/downloads/userguide/E_Series_UG_E900Rev_3425-01486_Web.pdf
https://downloads.linksys.com/downloads/userguide/E_Series_UG_E900Rev_3425-01486_Web.pdf
https://fccid.io/Q87-E1200V2/Internal-Photos/Internal-Photos-1564096
http://en.techinfodepot.shoutwiki.com/wiki/Linksys_E1200_v2

Figure 1: Photo from FCC ID shows screw and PCB positions

From there, we were able to successfully disassemble the router. The next step is to
identify the different components attached to the PCB and how they connect to each
other.

This was first done by reading the part number off the various components and then
searching the internet for information about the part. Ideally, we should aim to find the
datasheet for the part as it will contain anything and everything there is to know about
the part. Some parts (such as the flash chip) can be very small and thus it is difficult to
read their part numbers. This can be overcome by shining more light with a flashlight,
using the digital zoom of a phone camera, or if necessary, using a magnifying glass or
microscope.

Figure 2: Relevant Internal Components of E1200v2 PCB

Component (Part

Number)
Function Documentation

FPE H12106DK-R 10/100base-T 1:1 transformer http://www.fpe.com.cn/ch_tw/pdf
/PDF/10-100-9.pdf

Youth MB22001B 10/100 Base-T Dual LAN
Transformer

FR9882 Step-down DC/DC converter http://www.dzsc.com/uploadfile/
company/704680/20112171152
51271.pdf

W9425G6JH-5 CMOS Double Data Rate
synchronous dynamic random
access memory (DDR SDRAM)

https://www.acalbfi.com/uk/Semi
conductors/Memory-
Storage/SDRAM/p/4M-x-4-
Banks-x-16-Bits-DDR-
SDRAM/00000004K6
http://c1170156.r56.cf3.rackcdn.
com/UK_WND_W9425G6JH-
5_DS.pdf

25Q64BVSIG

SPI Flash Chip https://www.datasheetq.com/dat
asheet-
download/853500/1/Winbond/25
Q64BVSIG

Flash
Chip

CPU

LAN Transformers

RAM

http://www.fpe.com.cn/ch_tw/pdf/PDF/10-100-9.pdf
http://www.fpe.com.cn/ch_tw/pdf/PDF/10-100-9.pdf
http://www.dzsc.com/uploadfile/company/704680/2011217115251271.pdf
http://www.dzsc.com/uploadfile/company/704680/2011217115251271.pdf
http://www.dzsc.com/uploadfile/company/704680/2011217115251271.pdf
https://www.acalbfi.com/uk/Semiconductors/Memory-Storage/SDRAM/p/4M-x-4-Banks-x-16-Bits-DDR-SDRAM/00000004K6
https://www.acalbfi.com/uk/Semiconductors/Memory-Storage/SDRAM/p/4M-x-4-Banks-x-16-Bits-DDR-SDRAM/00000004K6
https://www.acalbfi.com/uk/Semiconductors/Memory-Storage/SDRAM/p/4M-x-4-Banks-x-16-Bits-DDR-SDRAM/00000004K6
https://www.acalbfi.com/uk/Semiconductors/Memory-Storage/SDRAM/p/4M-x-4-Banks-x-16-Bits-DDR-SDRAM/00000004K6
https://www.acalbfi.com/uk/Semiconductors/Memory-Storage/SDRAM/p/4M-x-4-Banks-x-16-Bits-DDR-SDRAM/00000004K6
http://c1170156.r56.cf3.rackcdn.com/UK_WND_W9425G6JH-5_DS.pdf
http://c1170156.r56.cf3.rackcdn.com/UK_WND_W9425G6JH-5_DS.pdf
http://c1170156.r56.cf3.rackcdn.com/UK_WND_W9425G6JH-5_DS.pdf
https://www.datasheetq.com/datasheet-download/853500/1/Winbond/25Q64BVSIG
https://www.datasheetq.com/datasheet-download/853500/1/Winbond/25Q64BVSIG
https://www.datasheetq.com/datasheet-download/853500/1/Winbond/25Q64BVSIG
https://www.datasheetq.com/datasheet-download/853500/1/Winbond/25Q64BVSIG

BCM5357

Wireless LAN (WLAN) router
System-on-a-Chip (SoC)

https://www.broadcom.com/prod
ucts/wireless/wireless-lan-
infrastructure/bcm5357

Table 1: List of Components on PCB of E1200v2

From the list of components found, we drew a logic block diagram and noted to potential
points of entry.

Figure 3: Logic Block Diagram of PCB Components and Ports

[Points of Entry are highlighted in colour]

Section 2.0: Preparing Universal Asynchronous Receiver/Transmitter (UART) Port
for Connection

During internal information gathering, we identified the serial connector on the PCB that
uses UART to communicate. Now we will attempt to tap into the port to communicate
with the CPU.

https://www.broadcom.com/products/wireless/wireless-lan-infrastructure/bcm5357
https://www.broadcom.com/products/wireless/wireless-lan-infrastructure/bcm5357
https://www.broadcom.com/products/wireless/wireless-lan-infrastructure/bcm5357

There are 5 pins on the connector, however, there are only 3 pins that are necessary for
the connection.

1. The transmitter (TX)
2. The receiver (RX)
3. Common ground (GND)

From an online resource1, we found the following pinout for the serial port.

However, as the information was merely found from a blog online, we needed to verify
this pinout. To verify ground, we used the multimeter to check for connectivity between
the various pins and connections we know are at common ground. Areas at common
ground are generally metal shieldings (which the E1200 has one) and the negative
terminal of capacitors. To verify the TX port, we use the oscillosope. As the CPU boots
up, we should see output on the TX pin. The pin with a “square” copper plating is
generally for voltage (VCC). That just leaves the RX pin and some other pin. The RX pin
is high while waiting for the start bit of a data packet, so we use the multimeter to figure
out which of the remaining pins is at high voltage.

After the analysis, we figure that the online pinout is correct and we can now solder on
jumper wire headers onto the holes. These jumper wire headers enable us to efficiently
plug our jumper cables into the port when we want to connect.

1 "Linksys E900 serial port pinout – Going on my way…." Tomcsanyi, July 26, 2013,
https://domonkos.tomcsanyi.net/?p=398. Accessed December 18, 2019.

() ?

() TX

() RX

() ?

() ground

Figure 4: Layout of Serial Port

Figure 5: Male-Male Jumper Wire Headers

Section 2.1: Communicating and Controlling with UART

To actually communicate with the UART chip on the target board, we needed a device
that was able to act as an interface to allow our computer to utilise the UART protocol.
For this section, we decided to use the UM232H-B USB to Serial/Parallel Break-Out
Module from Future Technology Devices International Ltd (FTDI). For future reference,
the UM232H-B uses the FT232H Single Channel HiSpeed USB to Multipurpose
UART/FIFO IC.

Figure 6: UM232H-B Module

By refering to the datasheet2, we know that the D0 and D1 ports on the UM232H-B
correspond to the TX and RX port when the UM232H-B is used for UART
communication. From there, we hook up the serial port on the target board with the
UM232H-B via 3 male-female jumper cables and the hardware set-up is finish.

On the software side, we need a UART client to be able to interface with the UM232H-
B. For windows, there is Putty3 and TeraTerm4, of which I choose to user TeraTerm

2 https://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_UM232H-B.pdf
3 "Download PuTTY." a free SSH and telnet client for Windows, https://www.putty.org/.
Accessed December 18, 2019.
4 “Tera Term - Terminal Emulator for Windows.” Tera Term Open Source Project. Accessed
December 18, 2019. https://ttssh2.osdn.jp/index.html.

https://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_UM232H-B.pdf

(personal preference). For linux users, there is minicom5 and picocom6. I do not
recommend the use of minicom as we were able to receive transmissions from our
target board but were unable to send keystrokes through minicom.

We ended up using TeraTerm for most of the UART sessions. To configure the UART
communication, we have to specify the baud rate, the number of databits, number of
parity bits and the number of stop bits per packet of data transferred. Details for these
parameters were found on the same website as in Figure 4. It is good to note that the
baud rate can also be determined by taking the reciprocal of the bit time found from the
oscilloscope trace of the TX pin.

Figure 7: BusyBox Rootshell via UART After Kernal Loads

From the TeraTerm terminal, we turn the target power off and on and watch the boot
process. We can then see the boot log7 and we are eventually dropped into a root shell.
From there we proceed to look around and collect more information8.

5"minicom(1)." Linux man page, https://linux.die.net/man/1/minicom. Accessed December 18,
2019.
6 "picocom(8)." Linux man page, https://linux.die.net/man/8/picocom. Accessed December 18,
2019.
7 Refer to Annex A
8 Refer to Annex B

To see what else we can do, we try to get into the bootloader. By spamming control-c or
escape as the system boots up, we manage to escape the boot sequence and we are
dropped into a Common Firmware Environment (CFE) shell9.

Figure 8: CFE Shell via UART

Section 3.0: Preparing to Communicating with the Flash Chip Over Serial
Pheripheral Interface (SPI)

The next task we decided to embark on was to communicate with the W25Q64BVSIG
SPI flash chip on the PCB to see if we could dump the firmware of the flash chip.

However, to ensure that we dumped the firmware correctly, we first updated the
firmware from “2.0.01 build 1” to “Ver. 2.0.11 (build 1)” such that we are able to compare
the firmware we eventually dump to the firmware we downloaded from the syslink
support page for the E120010.

As similarly to UART, we begin by identifying which legs of the flash chip correspond to
which connections in the SPI protocol.

The SPI protocol involves 4 basic data tranfer lanes:

1. Chip Select
2. Clock
3. Master In - Slave Out
4. Master Out - Slave In

9 Information found is in Annex B
10 “Linksys Official Support." E1200 Downloads, https://www.linksys.com/us/support-
article?articleNum=148523. Accessed December 18, 2019.

Figure 9: Connections Involved in SPI

By reading the manual for W25Q64BVSIG, we determine the following pin connections.

Pin No Pin Name I/O Function Intepretation

1 /CS I Chip Select Input Slave Select

2 DO(I01) I/O Data Output MISO

4 GND Ground

5 DI (IO0) I/O Data Input MOSI

6 CLK I Serial Clock Input Clock

8 VCC Power Supply
 Table 2: Legs of the W25Q64BVSIG in SPI Communication

*Note that Pins 3 & 7 are only used for Quad SPI Instructions

With UART, we had solded on pin headers to the ports in order to connect them our
UM232H-B. However, as the SPI chip is soldered onto the board, that was not possible.
That being said, we were able to use a Model 5250 Pomona SOIC-Clip to allow us to
use jumper wires to communicate with the flash chip.

Figure 10: Model 5250 Pomona SOIC-Clip

Now what was left hardware-wise was to connect the SOIC-Clip to the UM232H-B. By
referring to its datasheet, we got the following connections.

Port Function
D0 Clock (CLK)
D1 Data Out (MISO)
D2 Data In (MOSI)
D3 Chip Select (CS)

Gnd Ground (GND)
Table 3: UM232H-B Port Functions for SPI

After making the relevant connections from the flash chip to the UM232H-B and
plugging it into the laptop, the hardware set-up is complete.

Section 3.1: Attempting to Communicate with the SPI Flash Chip

To call the flash chip to dump its memory, we read the datasheet and find the read
command. We see that to get the chip to output its data, we dive the CS pin low and
shift in the 03h instruction into the data input (DI) pin, followed by a 24 bit memory
address of where we want to start reading from. From there the data wiill be put out
through the data output (DO) pin until the chip select pin is high again.

Figure 11: Read Data Instruction of W25Q64BV

In terms of actual implementation, there were 2 main pieces of software that we tried to
use.

1. Flashrom11
2. Libmpsse12

Firstly we attempted to use flashrom to communicate with the flash chip. This at first
seems promising because the W25Q64BV chip on the target board is in the list of
officially supported devices for flashrom13. Furthermore, our FT232H chip that we are
using is in the list of supported programmers14. For you information, the programmer is
the interface that flashrom uses to communicate with the physical interface (here being
the UM232H-B), allowing flashrom to access the SPI flash chip through the physical
interface15.

However, problems start almost immediately as we receive an error upon supplying the
“type=FT232H” parameter of the “ft2232_spi” programmer, suggesting that the there is
no such type. This could be because we conducted this test on a workstation running
Ubuntu 14.0416 which was rather old. To overcome this problem, we downloaded the
flashrom source code17 and built it from source. This allowed flashrom to detect our
FT232H chip, but then it was unable to detect the W25Q64BV flashchip.

Command used to interface with SPI chip via flashrom
./flashrom -p ft2232_spi:type=FT232H -i

11 "flashrom." Flashrom, https://www.flashrom.org/Flashrom. Accessed December 18, 2019.
12 "GitHub." devttys0/libmpsse: Open source library for SPI/I2C control via FTDI chips,
https://github.com/devttys0/libmpsse. Accessed December 18, 2019.
13 "Supported hardware." flashrom, https://www.flashrom.org/Supported_hardware. Accessed
December 18, 2019.
14 "Supported programmers." flashrom, https://www.flashrom.org/Supported_programmers.
Accessed December 18, 2019.
15 "flashrom(8)." Linux man page, https://linux.die.net/man/8/flashrom. Accessed December 18,
2019.
16 "Ubuntu 14.04.6 LTS (Trusty Tahr)." Ubuntu, http://releases.ubuntu.com/14.04/. Accessed
December 18, 2019.
17 "GitHub." flashrom/flashrom, https://github.com/flashrom/flashrom. Accessed December 18,
2019.

In our attempts to debug the problem, we replaced our UM232H-B with the Attify
Badge18. The pinouts for the Attify badge are clearly labelled on the badge itself, making
it more convenient to use.

Pin Code Function
D0 SCK Serial Clock
D1 MISO Master In Slave Out
D2 MOSI Master Out Slave In
D3 CS Chip Select

Table 4: Labelled SPI Pinout of Attify Badge

Figure 12: Attify Badge

However, even with the Attify Badge, flashrom was still unable to detect the chip. We
were unable to overcome this issue. On hindsight, this is likely because the CPU is
constantly querying the flashchip, making it ignore other commands from our FT232H
chip.

As flashrom was not working, we tried to use libmpsse to read the flashchip. However,
there were also several problems faced. Firstly,it required the use the “libftdi19” and
“libmpsse20” libraries. We installed the former using the “apt” package manager on our
Kali Virtual Machine (VM) and installed the latter using the the “pip” python 2 package
manager. Note that libmpsse only supports python 2. However, after doing so, running
“python spi_flash.py -r dump.bin -s 10000” resulted in a segmentation fault error. It turns
out that the issue was that there were some incomptible libaries, resulting in libmpsse
crashing. To resolve this, we ran the installation file of the Attify Badge graphical user

18 "Attify Store - Attify Badge." UART JTAG SPI I2C (pre-soldered headers) | Attify Store,
https://www.attify-store.com/products/attify-badge-uart-jtag-spi-i2c-pre-soldered-headers.
Accessed December 18, 2019.
19 "libftdi package : Ubuntu." Launchpad, https://launchpad.net/ubuntu/+source/libftdi. Accessed
December 18, 2019.
20 "libmpsse · PyPI." Pypi, May 03, 2017, https://pypi.org/project/libmpsse/. Accessed
December 18, 2019.

interface (GUI)21 which would install all the libraries required to operate the Attify Badge
properly. After doing so, we were able to run the spi_flash.py file, however the dump.bin
file was merely all “F”s (1s in binary).

We tested our set-up with another target board that was guaranteed to work, however
this also resulted in all “F”s. At this point, one of our collegues mentioned that the
labelling of the Attify Badge was wrong with the MISO and MOSI swapped (assuming
the attify badge is the master and the connected device is the slave)22.

Pin Code Function
D0 SCK Serial Clock
D1 MOSI Master Out Slave In
D2 MISO Master In Slave Out
D3 CS Chip Select

Table 5: True SPI Pinout of Attify Badge

Trying again, we are able to read the CHIPID of the guaranteed to work board.
However, we are unable to do so with the target board. Even more, we are unable to
read from the contents of the flash chip on the guaranteed to work board.

We eventually realised that it was because that board was not receiveing sufficient
power from the 3.3v supplied by the Attify Badge to the chip. As such, we used a
variable power supply to increase the voltage to 4 volts. We were now able to read from
the memory of the flash chip.

However, things still weren’t working with the target board. We were stll reading all “F”s.
At this point, we deduded that the CPU was probably keeping the SPI flash chip busy
and that we would have to desolder the chip to be able to dump its memory via SPI.
Thus we decided to put a pause to this venture and start on the Joint Test Action Group
(JTAG) section first.

Section 4.0: Preparations for JTAG Communication

As with the other 2 protocols used earlier, it is good to know what connections we need
to make before starting. For a successful JTAG connection, there are 4 mandatory
connections and 1 optional one23.

They are:

21 "GitHub." attify/attify-badge: Attify Badge GUI tool to interact over UART, SPI, JTAG, GPIO
etc., https://github.com/attify/attify-badge. Accessed December 18, 2019.
22 "Intro to Hardware Hacking." Dumping your First Firmware,
https://nvisium.com/blog/2019/08/07/extracting
23 "Technical Guide to JTAG." XJTAG Tutorial, https://www.xjtag.com/about-jtag/jtag-a-
technical-overview/. Accessed December 18, 2019.

1. TCK (Test Clock)
2. TMS (Test Mode Select)
3. TDI (Test Data In)
4. TDO (Test Data Out)
5. TRST (Test Reset) [Optional]

The collection of the mandatory ports make up a test access port (TAP).

In the internal information gathering stage (refer to section 1.1), we identified a 12 pin
JTAG connector on the PCB. We now proceed to identify the pin out, via a quick Google
search, we find the following pin configuration.

Figure 13: Pinout Found Online24

Thus we know that we only need 6 wires, 1 for each data transfer wires and 1 for
ground. However, at this stage, the connector is merely 12 very small holes on the PCB,
we then spend a considerable amount of time soldering connectors to the holes.

We initially try to put straight headers25 into the holes. However, we find that we are
unable to put rows adjacent to each other. We then try to put a 2x6 T shaped header
into the ports, but this led to the issue of the headers being difficult to attach to wires as
the header pins were very close to each other, thus it was very easy for solder to short 2
pins.

Figure 14: T-shaped Headers

24 https://forum.dd-wrt.com/phpBB2/files/jtag_pin_out_142.jpg
25 Refer to Figure 5

We eventually settled on directly shoving wires through the holes on the PCB and
soldering them directly there. However, there is the problem of the multi-stranded wires
being too soft to shove throught the holes. We avoided this problem by only putting 3
out of 5 of the individual strands into each hole. However there is nowo the problem of
the connection being relatively weak and the stray strands touching other connections,
resulting in flaky connections later on.

That being said, the connection could be made (no matter how flaky), and as long as we
didn’t touch it too much, it would be fine.’

We proceed to verify the above pinout in Figure 11 using the JTAGulator26. We
connected up the JTAG port to our JTAGulator and connected to the JTAGulator over
UART using picocom. However, upon doing the IDSCAN and BYPASS scan, there are
no results returned. While we were very puzzled, looking back, it is probably because of
the flaky hardware connection described above.

Figure 15: JTAGulator

We then assumed that the Figure 11 pinout was correct and proceeded to connect the
board to our Attify Badge.We attach the 4 mandatory wires and ignore the optional reset
pin.

Section 4.1: Communication via JTAG

The standard for communicating via JTAG and issuing high level commands to the CPU
is Open On-Chip Debugger (OpenOCD)27. Fortunately for us, it was already installed on
my Kali VM after running the Attify Badge GUI install script in section 3.1.

To use OpenOCD, we need to specify configuration files ideally for these 3 components

26 Industries, Adafruit. “JTAGulator by Grand Idea Studio.” adafruit industries blog RSS.
Accessed December 18, 2019. https://www.adafruit.com/product/1550.
27 "Open On-Chip Debugger." Openocd, http://openocd.org/. Accessed December 18, 2019.

1. The interface we use (our Attify Badge)
2. Our target CPU (BCM5357)
3. Our taret board (E1200v2)

While there is a configuration file for the Attify Badge, we are unable to find a config file
for our target board and our target CPU. Thus we start by using the autoprobe
function28 to detect the test access points (TAPs) on the CPU.

This results in OpenOCD being able to identify a TAP and returning the instruction
register length and the expected device ID . We then modify the BCM4718.cfg file by
changing the LVTAP ID to the one that OpenOCD autoprobe had detected. After which
we ran openOCD again but were prompted with the error of an unexpected CPUID.
However, the error gave the CPUID it found, so we just modified our BCM4718.cfg29 to
expect that CPUID. And just like that, we are in.

Figure 16: Successful Start of the OpenOCD Server

From there, we test the various functions of OpenOCD to ensure we have control over
the CPU. We test poll which shows the TAP as being enabled, and we test halt which
returns that the CPU has been halted. However, when we run “targets” to check the
status of the CPU, we see that it is still running. We then try spamming halt multiiple
times which results in the CPU being actually halted. We theorise that there is a
watchdog process running that reboots the CPU when it is halted. This is further
suggested by the fact that the CPU always halts properly when we send 2 halt
commands fast and in succession meaning that the first halt causes a reboot and the
second halt stops the CPU before the watchdog process is start up.

28 "OpenOCD User’s Guide: TAP Declaration." Openocd, http://openocd.org/doc/html/TAP-
Declaration.html. Accessed December 18, 2019.
29 Refer to Annex C

To really confirm that we are controlling the CPU, we look into the boot process using
UART with the UM232H-B and as the CPU boots up, we halt the CPU, and indeed we
see the reboot caused by the watchdog process and then we see that the CPU halts
after the second halt command. We are also able to step through the instructions and
call for the processor to resume operation, thus we conclude that we have attained
control over the CPU via JTAG.

Section 4.2: Flash Dumping with OpenOCD

To do a flash dump, we first need to declare the parameters of the flash storage to
openOCD. This is done through the flash bank command30 in the config file. As we
didn’t know many of the parameters of the flash memory such as the “chip_width” or
“bus_width”, we looked at the config file of another syslink router board (linksys-
wrt54gl.cfg) and modified the flash bank command from there. We knew that the size of
the flash chip on our target board was 8MB so that was the only parameter we changed.
Details for the modified command are found in Annex C). An important parameter that
we needed to modify but didn’t know what to modify the value to was the base_address
of the flash chip.

Eventually, by looking at the UART logs, we notice a line

CMD: [boot -raw -z -addr=0x80001000 -max=0x6ff000 flash0.os:]

and use 0x80001000 as the base address.
Now there are 2 defined functions to read from flash memory

• flash read
• dump_image

As flash read threw some errors, we just went with using dump_image. However,
dump_image requires an address to start from which we don’t really know. We tried
dumping 712944 bytes from 0x80700000, which were values we got from the UART
boot logs, however, a binwalk on the output didn’t yield anything interesting. That being
said, we were able to perform “strings” on the bin file and found that we were dumping
some interesting strings, meaning that we were dumping near the correct area.

Refering back to the avoid boot command in the UART log, we try to dump 8MB from
0x80001000 to extract the entire flash disk of contents. However, due to the flaky
connection, it was difficult to dump the entire disk without the connection being dropped.
The entire transfer was expected to take 8 hours, thus we decided to run it overnight.

30 "OpenOCD User’s Guide: Flash Commands." Openocd, http://openocd.org/doc/html/Flash-
Commands.html. Accessed December 18, 2019.

Figure 17: Connection Repeatedly Dropped While Dumping 8MB

The dumping took 10.9 hours, however, we managed to attain a 7.7MB file as a result.
Performing a binwalk on the file, we get the result in Annex D.

Where there are indeed many different components of the bin file that are identifiable by
binwalk, there is no squashfs file system found and we unable to extract the firmware
with binwalk -e.

Eventually, we realised that dump_image dumps from the system’s RAM rather than
flash. Thus we spend a large amount of time trying to configure the “flash bank”
command but to no avail.

We also try to halt the CPU with JTAG and dump the flash through SPI. But that also
didn’t work, proably because the CPU is halted in a position that still holds control over
the SPI chip.

Lastly, we try to go into the CFE through UART and use the “load” command to load the
OS into the RAM. After which, we would use dump_image to access the RAM.
However, the Attify Badge I had been using died before we could try this.

We tried to use another Attify Badge to connect with JTAG again there were some
errrors and we were unable to successfully control the CPU again. We hypothesize that
the boundary scan cells were destroyed when the first Attify Badge was also destroyed.
As such we are unable to continue with our JTAG ventures.

Figure 18: OpenOCD Unable to Communicate with the CPU Properly

Annex A: UART Boot Log and Entering CFE via UART

Decompressing...done
Start to blink diag led ...

CFE version 5.100.138.11 based on BBP 1.0.37 for BCM947XX (32bit,SP,LE)
Build Date: 11/23/11 12:16:38 CST (wzh@cybertan)
Copyright (C) 2000-2008 Broadcom Corporation.

Initializing Arena
Initializing Devices.

No DPN
This is a Serial Flash
Boot partition size = 262144(0x40000)
Found an ST compatible serial flash with 128 64KB blocks; total size 8MB
Partition information:
boot #00 00000000 -> 0003FFFF (262144)
trx #01 00040000 -> 0004001B (28)
os #02 0004001C -> 007EFFFF (8060900)
nvram #03 007F0000 -> 007FFFFF (65536)
Partition information:
boot #00 00000000 -> 0003FFFF (262144)
trx #01 00040000 -> 007EFFFF (8060928)
nvram #02 007F0000 -> 007FFFFF (65536)
BCM47XX_GMAC_ID
et0: Broadcom BCM47XX 10/100/1000 Mbps Ethernet Controller 5.100.138.11
CPU type 0x19749: 300MHz
Total memory: 32768 KBytes

CFE mem: 0x80700000 - 0x807AE0F0 (712944)
Data: 0x80743360 - 0x80747440 (16608)
BSS: 0x80747440 - 0x807480F0 (3248)
Heap: 0x807480F0 - 0x807AC0F0 (409600)
Stack: 0x807AC0F0 - 0x807AE0F0 (8192)
Text: 0x80700000 - 0x80743360 (275296)

Boot version: v5.3.7
The boot is CFE
mac_init(): Find mac [20:aa:4b:3c:ce:b3] in location 0
Nothing...

CLKDIV= 0x8080842, SFlashClkDiv=8 clkdivsf=2 ###

Change it to 0x2080842 (2) ###
CMD: [ifconfig eth0 -addr=192.168.1.1 -mask=255.255.255.0]
Device eth0: hwaddr 20-AA-4B-3C-CE-B3, ipaddr 192.168.1.1, mask 255.255.255.0
 gateway not set, nameserver not set
CMD: [go;]
Check CRC of image1
 Len: 0x771000 (7802880) (0xBC040000)
 Offset0: 0x1C (28) (0xBC04001C)
 Offset1: 0x14FF14 (1376020) (0xBC18FF14)
 Offset2: 0x0 (0) (0xBC040000)
 Header CRC: 0xE66A894E
 Calculate CRC: 0xE66A894E
Image 1 is OK
Try to load image 1.
Waiting for 3 seconds to upgrade ...
CMD: [load -raw -addr=0x807ae0f0 -max=0x1851f10 :]

Loader:raw Filesys:tftp Dev:eth0 File:: Options:(null)
Loading: _tftpd_open(): retries=0/3
_tftpd_open(): retries=1/3
_tftpd_open(): retries=2/3

Start=417500943 E=735697857 Delta=318196914 ###
Failed.
Could not load :: Timeout occured
CMD: [boot -raw -z -addr=0x80001000 -max=0x6ff000 flash0.os:]
Loader:raw Filesys:raw Dev:flash0.os File: Options:(null)
Loading: 3334532 bytes read

Start=740727873 E=921456100 Delta=180728227 ###
Entry at 0x80001000
Closing network.
Starting program at 0x80001000
Linux version 2.6.22 (hhm@sw3) (gcc version 4.2.3) #44 Sat Sep 8 13:15:31 HKT 20
18
prom_init:123: memory size is (2000000) by automatily calculating!
prom_init:190: mem:2000000, actually, test by seal!
CPU revision is: 00019749
Found an ST compatible serial flash with 128 64KB blocks; total size 8MB
Determined physical RAM map:
 memory: 02000000 @ 00000000 (usable)
Zone PFN ranges:
 Normal 0 -> 8192
 HighMem 8192 -> 8192
early_node_map[1] active PFN ranges
 0: 0 -> 8192
Built 1 zonelists. Total pages: 8192
Kernel command line: root=/dev/mtdblock2 console=ttyS0,115200 init=/sbin/preinit
Primary instruction cache 32kB, physically tagged, 4-way, linesize 32 bytes.
Primary data cache 32kB, 4-way, linesize 32 bytes.
Synthesized TLB refill handler (20 instructions).
Synthesized TLB load handler fastpath (32 instructions).
Synthesized TLB store handler fastpath (32 instructions).
Synthesized TLB modify handler fastpath (31 instructions).
PID hash table entries: 256 (order: 8, 1024 bytes)
CPU: BCM53572 rev 1 at 300 MHz
Using 150.000 MHz high precision timer.
Dentry cache hash table entries: 4096 (order: 2, 16384 bytes)
Inode-cache hash table entries: 2048 (order: 1, 8192 bytes)
Memory: 27916k/32768k available (2546k kernel code, 4836k reserved, 505k data, 2
04k init, 0k highmem)
Mount-cache hash table entries: 512
NET: Registered protocol family 16
PCI: no core
PCI: no core
PCI: Fixing up bus 0
NET: Registered protocol family 2
Time: MIPS clocksource has been installed.
IP route cache hash table entries: 1024 (order: 0, 4096 bytes)
TCP established hash table entries: 1024 (order: 1, 8192 bytes)
TCP bind hash table entries: 1024 (order: 0, 4096 bytes)
TCP: Hash tables configured (established 1024 bind 1024)
TCP reno registered
squashfs: version 3.2-r2 (2007/01/15) Phillip Lougher
fuse init (API version 7.8)
io scheduler noop registered (default)
HDLC line discipline: version $Revision: 1.1.1.1 $, maxframe=4096
N_HDLC line discipline registered.

Serial: 8250/16550 driver $Revision: 1.1.1.1 $ 4 ports, IRQ sharing disabled
serial8250: ttyS0 at MMIO 0x0 (irq = 8) is a 16550A
loop: module loaded
PPP generic driver version 2.4.2
NET: Registered protocol family 24
Register DIAG LED in /proc/sys/diag_blink.
The DIAG LED GPIO is 6.
Register DIAG LED success in /proc/sys/diag_blink.
pflash: found no supported devices
sflash: squash filesystem with lzma found at block 1599
Creating 4 MTD partitions on "sflash":
0x00000000-0x00040000 : "boot"
0x00040000-0x007f0000 : "linux"
0x0018ff14-0x007f0000 : "rootfs"
mtd: partition "rootfs" doesn't start on an erase block boundary -- force read-o
nly
0x007f0000-0x00800000 : "nvram"
u32 classifier
nf_conntrack version 0.5.0 (256 buckets, 2048 max)
edward ====to register conntrack protocol helper for esp:
nf_conntrack_rtsp v0.6.21 loading
nf_nat_rtsp v0.6.21 loading
edward =======nf_nat_proto_esp_init
ip_tables: (C) 2000-2006 Netfilter Core Team
TCP cubic registered
NET: Registered protocol family 1
NET: Registered protocol family 10
lo: Disabled Privacy Extensions
ip6_tables: (C) 2000-2006 Netfilter Core Team
NET: Registered protocol family 17
Ebtables v2.0 registered
802.1Q VLAN Support v1.8 Ben Greear <greearb@candelatech.com>
All bugs added by David S. Miller <davem@redhat.com>
VFS: Mounted root (squashfs filesystem) readonly.
Freeing unused kernel memory: 204k freed
Warning: unable to open an initial console.
Failed to execute /init
ctmisc: module license 'unspecified' taints kernel.
Register /dev/ctmisc device, major:10 minor:255
cmd=[/sbin/hotplug2 --coldplug &]
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory

/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
/dev/nvram: No such file or directory
[sighandler]: No more events to be processed, quitting.
[cleanup]: Waiting for children.
[cleanup]: All children terminated.
hahaha enter wl_nvram_convert!
The boot is CFE
Algorithmics/MIPS FPU Emulator v1.5
/dev/: cannot create
cmd=[misc -t get_mac -w 3]
type = [get_mac]ctmisc_ioctl: cmd=0x11, buffer size=404

get_data(): cmdata_init(): base = 0xbc03ee00
d=0x11 count=8 ldata_init(): location = [1], mydatas index = 1
en=18
ctmisc_ioctl: index=1
tallest:=====(ctmisc ioctl done...)=====
get_data(): Get MAC count is [1]
get_data(): MAC 0: [20:aa:4b:3c:ce:b3ÿ]
get_data name get_mac write_to_nv 3
get_data(): done
cmd=[misc -t get_wsc_pin -w 3]
type = [get_wsc_ctmisc_ioctl: cmd=0x26, buffer size=404
pin]
get_data()data_init(): base = 0xbc03f400
: cmd=0x26 countdata_init(): location = [1], mydatas index = 1
=8 len=8
ctmisc_ioctl: index=1
tallest:=====(ctmisc ioctl done...)=====
get_data(): Get WSC count is [1]
get_data(): WSC 0: [87227482]
get_data name get_wsc_pin write_to_nv 3
get_data(): done
cmd=[misc -t get_sn -w 3]
type = [get_sn]ctmisc_ioctl: cmd=0x15, buffer size=404

get_data(): cmdata_init(): base = 0xbc03fe32
d=0x15 count=8 ldata_init(): location = [1], mydatas index = 1
en=20
ctmisc_ioctl: index=1
tallest:=====(ctmisc ioctl done...)=====
get_data(): Get SN count is [1]
get_data(): SN 0: [10820C63242832ÿÿÿÿÿÿ]
get_data name get_sn write_to_nv 3
get_data(): done
cmd=[misc -t get_flash_type -w 1]
type = [get_flasctmisc_ioctl: cmd=0x17, buffer size=404
h_type]

get_flasflash_init: sflash type 0x100
sh_type(): cmd=0sflash_init: sflash type 0x16
x17 count=0 len=Flash Type: SFLASH 8192 kB
0
tallest:=====(ctmisc ioctl done...)=====
Get FLASH TYPE is [SFLASH 8192 kB]
cmd=[misc -t get_pa0idxval -w 3]
type = [get_pa0ictmisc_ioctl: cmd=0x28, buffer size=404
dxval]
get_datadata_init(): base = 0xbc03efe0
(): cmd=0x28 coudata_init(): location = [0], mydatas index = 0
nt=8 len=24
ctmisc_ioctl: index=0
tallest:=====(ctmisc ioctl done...)=====
get_data(): Get PA0IDXVAL count is [0]
get_data name get_pa0idxval write_to_nv 3
get_data(): done
Using default PA0 value
cmd=[misc -t get_pa1idxval -w 3]
type = [get_pa1ictmisc_ioctl: cmd=0x2a, buffer size=404
dxval]
get_datadata_init(): base = 0xbc03ef20
(): cmd=0x2a coudata_init(): location = [0], mydatas index = 0
nt=8 len=24
ctmisc_ioctl: index=0
tallest:=====(ctmisc ioctl done...)=====
get_data(): Get PA1IDXVAL count is [0]
get_data name get_pa1idxval write_to_nv 3
get_data(): done
Using default PA1 value
Cannot find lang from /proc/mtd
ret = -1
www -> /www
mount: No such file or directory
cmd=[insmod emf]
cmd=[insmod igs]
cmd=[insmod ctf]
Needed modules: et wl ip6table_mangle ip6table_filter ip6t_rt ip6t_frag ip6t_ipv
6header ip6t_REJECT ip6t_LOG ip6t_ipv6range tunnel4 sit tunnel6 ip6_tunnel nf_co
nntrack_h323.ko nf_nat_h323.ko xt_TCPMSS.ko
cmd=[insmod et]
cmd=[insmod wl]
cmd=[insmod ip6table_mangle]
cmd=[insmod ip6table_filter]
cmd=[insmod ip6t_rt]
cmd=[insmod ip6t_frag]
cmd=[insmod ip6t_ipv6header]
cmd=[insmod ip6t_REJECT]
cmd=[insmod ip6t_LOG]
cmd=[insmod ip6t_ipv6range]
cmd=[insmod tunnel4]
cmd=[insmod sit]
cmd=[insmod tunnel6]
cmd=[insmod ip6_tunnel]
cmd=[insmod nf_conntrack_h323.ko]
cmd=[insmod nf_nat_h323.ko]
cmd=[insmod xt_TCPMSS.ko]
cmd=[insmod dnshook]
Hit enter to continue...cmd=[misc -t get_country -w 3]
type = [get_country]
get_data(): cmd=0x2c count=30 len=2

get_data(): Get COUNTRY count is [1]
get_data(): COUNTRY 0: [AU]
get_data name get_country write_to_nv 3
get_data(): done
waitpid: No child processes
The chipset is BCM5357 for E1200
cmd=[killall httpd]
killall: httpd: no process killed
killall: check_http.sh: no process killed
cmd=[killall gn-httpd]
killall: gn-httpd: no process killed
waitpid: No child processes
cmd=[killall gn-httpd]
killall: gn-httpd: no process killed
waitpid: No child processes
cmd=[killall wm-httpd]
killall: wm-httpd: no process killed
waitpid: No child processes
cmd=[et robowr 0x02 0x06 0x001000a0]
cmd=[resetbutton]
cmd=[vconfig set_name_type VLAN_PLUS_VID_NO_PAD]
cmd=[vconfig add eth0 1]
cmd=[vconfig set_ingress_map vlan1 0 0]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan1 1 1]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan1 2 2]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan1 3 3]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan1 4 4]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan1 5 5]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan1 6 6]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan1 7 7]
waitpid: No child processes
cmd=[vconfig add eth0 2]
cmd=[vconfig set_ingress_map vlan2 0 0]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan2 1 1]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan2 2 2]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan2 3 3]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan2 4 4]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan2 5 5]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan2 6 6]
waitpid: No child processes
cmd=[vconfig set_ingress_map vlan2 7 7]
waitpid: No child processes
cmd=[brctl addbr br0]
cmd=[brctl setfd br0 0]
waitpid: No child processes
cmd=[brctl stp br0 dis]
cmd=[brctl addif br0 vlan1]
waitpid: No child processes

br0: No child processes
cmd=[wlconf vlan1 up]
vlan1: Operation not supported
Write wireless mac successfully
cmd=[brctl addif br0 eth1]
waitpid: No child processes
br0: No child processes
cmd=[wlconf eth1 up]
eth1: Operation not supported
eth1: Operation not permitted
wlconf: PHYTYPE: 4
eth1: Invalid argument
eth1: Invalid argument
eth1: Operation not supported
eth1: Operation not supported
cmd=[brctl addif br0 eth1]
device eth1 is already a member of a bridge; can't enslave it to bridge br0.
waitpid: No child processes
Write wireless mac fail : : No such device
cmd=[brctl addif br0 eth2]
interface eth2 does not exist!
eth2: No such device
cmd=[brctl addif br0 eth3]
interface eth3 does not exist!
eth3: No such device
Set 1 to /proc/sys/net/ipv6/conf/br0/forwarding ...
cmd=[iptables -t nat -F wlwarning2wan]
iptables: No chain/target/match by that name
cmd=[iptables -F wlwarningaccept]
iptables: No chain/target/match by that name
waitpid: No child processes
cmd=[ip6tables -t mangle -F wlwarning2wan]
ip6tables: No chain/target/match by that name
cmd=[ip6tables -t filter -F wlwarningaccept]
ip6tables: No chain/target/match by that name
waitpid: No child processes
lo: File exists
Set 66560 to /proc/sys/net/core/rmem_max ...
set 2048 to /proc/sys/vm/min_free_kbytes
cmd=[klogd -c 1]
cmd=[syslogd -m 0 -O /var/log/mess]
cmd=[tftpd -s /tmp -c -l -P E150]
cmd=[cron]
The boot is CFE
tftp server started
tftpd: standalone socket
cmd=[httpd]
cmd=[touch /tmp/hosts]
waitpid: No child processes
cmd=[dnsmasq -h -i br0 -c 0 -r /tmp/resolv.conf -u]
cmd=[route del -net 224.0.0.0 netmask 240.0.0.0 dev br0]
route: ioctl 0x890c failed: No such process
waitpid: No child processes
cmd=[route add -net 224.0.0.0 netmask 240.0.0.0 dev br0]
cmd=[cesmDNS -o /tmp/.mdns_host_info -d -h Cisco42832 -l 192.168.1.1]
Starting in daemon mode
br0 192.168.1.100 86400
write_dhcpd_conf: file=/tmp/dhcpd-br0.conf, ifname=br0, lan_ip=lan_ipaddr lan_ma
sk=lan_netmask
cmd=[dhcpd -cf /tmp/dhcpd-br0.conf -lf /tmp/dhcpd.leases -df /tmp/udhcpd.leases
-pf /var/run/dhcpd.pid br0]

Internet Systems Consortium DHCP Server 4.1.1-P1
Copyright 2004-2010 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
Wrote 0 leases to leases file.
Listening on Socket/br0/192.168.1.0/24
Sending on Socket/br0/192.168.1.0/24
cmd=[upnp -D -W vlan2]
cmd=[/bin/eapd]
UPnP::upnp_device_attach:br0: attach InternetGatewayDevice.xml
ssdp byebye
UPnP::upnp_init:UPnP daemon is ready to run
cmd=[nas]
cmd=[killall wps_monitor]
killall: wps_monitor: no process killed
waitpid: No child processes
cmd=[killall wps_ap]
killall: wps_ap: no process killed
cmd=[killall wps_enr]
killall: wps_enr: no process killed
cmd=[/bin/wps_monitor]
cmd=[/usr/sbin/acsd]
acsd: scan in progress ...
acsd: scan in progress ...
acsd: scan in progress ...
acsd: scan in progress ...
acsd: scan in progress ...
acsd: scan in progress ...
acsd: scan in progress ...
acsd: scan in progress ...
acsd: scan in progress ...
acsd: scan in progress ...
acsd: scan in progress ...
acsd: scan in progress ...
acsd: selected channel spec: 0x2b01
cmd=[netbios /tmp/samba/lib/netbios.conf]
cmd=[nlinkd]
lltd:echo Cisco42832 > /proc/sys/kernel/hostname
LLTD: wireless interface argument is eth1.
cmd=[killall -1 radvd]
killall: radvd: no process killed
cmd=[/sbin/monitor_cable]
cmd=[/usr/sbin/arp -c]
cmd=[touch /tmp/hosts]
waitpid: No child processes
tallest:=====(wan_or_lan=wan)=====
start_wan_ipv6: [IPV6] vlan2 dhcp
cmd=[touch /tmp/hosts]
waitpid: No child processes
dhcpc_main,reason[PREINIT]
start_wan_ipv6: [IPV6] 0
Hit enter to continue...cmd=[killall igmpxmld]
killall: igmpxmld: no process killed
stop_dhcp6c
cmd=[/usr/sbin/ip -6 addr flush dev vlan2 scope global]
cmd=[ip6tables -t filter -F]
waitpid: No child processes
cmd=[ip6tables -t filter -Z]
cmd=[ip6tables -t mangle -F]
cmd=[ip6tables -t mangle -Z]
Set 0 to /proc/sys/net/ipv6/conf/all/forwarding ...

ioctl: No such device
cmd=[killall -9 waninfo]
stop_wan_ipv6: done
RTNETLINK answers: No such file or directory
Set 0 to /proc/sys/net/ctf/wan_mode ...
cmd=[killall nlinkd]
killall: cannot kill pid 455: No such process
killall: cannot kill pid 456: No such process
killall: cannot kill pid 457: No such process
killall: cannot kill pid 458: No such process
killall: cannot kill pid 459: No such process
killall: cannot kill pid 460: No such process
killall: cannot kill pid 461: No such process
killall: cannot kill pid 462: No such process
killall: cannot kill pid 463: No such process
killall: cannot kill pid 464: No such process
killall: cannot kill pid 465: No such process
killall: cannot kill pid 466: No such process
killall: cannot kill pid 467: No such process
killall: cannot kill pid 468: No such process
killall: cannot kill pid 469: No such process
killall: cannot kill pid 470: No such process
killall: cannot kill pid 471: No such process
killall: cannot kill pid 472: No such process
killall: cannot kill pid 473: No such process
killall: cannot kill pid 474: No such process
killall: cannot kill pid 475: No such process
killall: cannot kill pid 476: No such process
killall: cannot kill pid 477: No such process
killall: cannot kill pid 478: No such process
killall: cannot kill pid 479: No such process
killall: cannot kill pid 480: No such process
killall: cannot kill pid 481: No such process
killall: cannot kill pid 482: No such process
killall: cannot kill pid 483: No such process
killall: cannot kill pid 484: No such process
killall: cannot kill pid 485: No such process
cmd=[killall -9 nlinkd]
killall: nlinkd: no process killed
waitpid: No child processes
cmd=[killall -9 qos_bw_detect]
killall: qos_bw_detect: no process killed
cmd=[killall igmprt]
killall: igmprt: no process killed
waitpid: No child processes
cmd=[killall pppd]
killall: pppd: no process killed
cmd=[killall -9 pppd]
killall: pppd: no process killed
cmd=[killall ip-up]
killall: ip-up: no process killed
cmd=[killall ip-down]
killall: ip-down: no process killed
cmd=[killall -15 pppd]
killall: pppd: no process killed
cmd=[killall -9 pppd]
killall: pppd: no process killed
cmd=[killall -15 l2tpd]
killall: l2tpd: no process killed
cmd=[killall -9 l2tpd]
killall: l2tpd: no process killed

cmd=[killall -9 listen]
killall: listen: no process killed
stop_dhcpc
cmd=[killall bpalogin]
killall: bpalogin: no process killed
cmd=[killall -9 bpalogin]
killall: bpalogin: no process killed
cmd=[killall -9 pppd]
killall: pppd: no process killed
cmd=[killall -9 ntpclient]
killall: ntpclient: no process killed
waitpid: No child processes
cmd=[killall -9 redial]
killall: redial: no process killed
cmd=[killall wan_auto_detect]
killall: wan_auto_detect: no process killed
Hit enter to continue...

BusyBox v1.7.2 (2018-09-08 13:19:02 HKT) built-in shell (msh)
Enter 'help' for a list of built-in commands.

reboot
Restarting system.
Decompressing...done
Start to blink diag led ...

CFE version 5.100.138.11 based on BBP 1.0.37 for BCM947XX (32bit,SP,LE)
Build Date: 11/23/11 12:16:38 CST (wzh@cybertan)
Copyright (C) 2000-2008 Broadcom Corporation.

Initializing Arena
Initializing Devices.

No DPN
This is a Serial Flash
Boot partition size = 262144(0x40000)
Found an ST compatible serial flash with 128 64KB blocks; total size 8MB
Partition information:
boot #00 00000000 -> 0003FFFF (262144)
trx #01 00040000 -> 0004001B (28)
os #02 0004001C -> 007EFFFF (8060900)
nvram #03 007F0000 -> 007FFFFF (65536)
Partition information:
boot #00 00000000 -> 0003FFFF (262144)
trx #01 00040000 -> 007EFFFF (8060928)
nvram #02 007F0000 -> 007FFFFF (65536)
BCM47XX_GMAC_ID
et0: Broadcom BCM47XX 10/100/1000 Mbps Ethernet Controller 5.100.138.11
CPU type 0x19749: 300MHz
Total memory: 32768 KBytes

CFE mem: 0x80700000 - 0x807AE0F0 (712944)
Data: 0x80743360 - 0x80747440 (16608)
BSS: 0x80747440 - 0x807480F0 (3248)
Heap: 0x807480F0 - 0x807AC0F0 (409600)
Stack: 0x807AC0F0 - 0x807AE0F0 (8192)
Text: 0x80700000 - 0x80743360 (275296)

Boot version: v5.3.7
The boot is CFE
mac_init(): Find mac [20:aa:4b:3c:ce:b3] in location 0
Nothing...

CLKDIV= 0x2080842, SFlashClkDiv=2 clkdivsf=2 ###

Change it to 0x2080842 (2) ###
CMD: [ifconfig eth0 -addr=192.168.1.1 -mask=255.255.255.0]
Device eth0: hwaddr 20-AA-4B-3C-CE-B3, ipaddr 192.168.1.1, mask 255.255.255.0
 gateway not set, nameserver not set
Automatic startup canceled via Ctrl-C / ESC
CFE> ^C
CFE> ^C
CFE>

Annex B: UART Shell Information
cpuinfo
system type : Broadcom BCMD144 chip rev 1
processor : 0
cpu model : MIPS 74K V4.9
BogoMIPS : 149.50
wait instruction : no
microsecond timers : yes
tlb_entries : 32
extra interrupt vector : no
hardware watchpoint : yes
ASEs implemented : mips16 dsp
VCED exceptions : not available
VCEI exceptions : not available
unaligned_instructions : 41
dcache hits : 2147483648
dcache misses : 4294426625
icache hits : 2147483648
icache misses : 4253020159
instructions : 2147483648
#cat filesystems
nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev sockfs
nodev pipefs
nodev anon_inodefs
nodev futexfs
nodev tmpfs
nodev inotifyfs
nodev configfs
nodev devpts
 squashfs
nodev ramfs
nodev autofs
nodev fuse
 fuseblk
nodev fusectl

cat iomem
00000000-01ffffff : System RAM
00001000-0023a113 : Kernel code
0023a114-002b20bf : Kernel data
cat version
linux version 2.6.22 (wzh@cybertan) (gcc version 4.2.3) #7 Thu Nov 10 16:04:37 CST
2011
#uname -a
Linux (none) 2.6.22 #7 Thu Nov 10 16:04:37 CST 2011 mips unknown
cat partitions
major minor #blocks name
31 0 256 mtdblock0
 31 1 7872 mtdblock1
 31 2 6653 mtdblock2
 31 3 64 mtdblock3

cat mtd
 dev: size erasesize name
 mtd0: 00040000 00010000 "boot"
 mtd1: 007b0000 00010000 "linux"
 mtd2: 0067f684 00010000 "rootfs"
 mtd3: 00010000 00010000 "nvram"
CFE Environment Variables
Variable Name Value
-------------------- --
BOOT_CONSOLE uart0
CFE_VERSION 1.0.37
CFE_BOARDNAME BCM947XX
CFE_MEMORYSIZE 32768
NET_DEVICE eth0
NET_IPADDR 192.168.1.1
NET_NETMASK 255.255.255.0
NET_GATEWAY 0.0.0.0
NET_NAMESERVER 0.0.0.0
STARTUP go;
Available Commands [Note that the lists are overlapping]
Commands from bin
addgroup delgroup fgrep more pwd umount
adduser deluser grep mount rm uname
busybox df kill msh rmdir usleep
cat dmesg ln mv sh wps_monitor
chgrp eapd login netstat sleep
chmod echo ls ping su
cp egrep mkdir ping6 touch
date false mknod ps true
Commands from sbin
6rd_nud hb_connect qos_bw_detect
check_all_led hb_disconnect rc
check_ps hotplug reboot
check_ses_led hotplug2 redial
check_wps_led hotplug_2 resetbutton
ddns_checkip ifconfig restore
ddns_error init rmmod
ddns_success insmod route
detectwan ipupdated sendudp

dhclient klogd ses_led
diag_pingbutton listen setreg
diag_tracertbutton logread stats
diagwpsbutton lsmod sulogin
disconnected_pppoe misc swapoff
erase mkfs.minix swapon
fdisk monitor_cable sysctl
filter ntpd syslogd
filtersync pivot_root udevtrigger
fsck.minix power_led wan_auto_detect
generate_md5sum poweroff waninfo
getreg ppp_event wl_iocmd
getty preinit write
gpio_check process_monitor
halt qos
Busybox Functios
addgroup, adduser, basename, cat, chgrp, chmod,
clear, cp, cut, date, delgroup, deluser, df, dirname,
dmesg, du, echo, egrep, env, expr, false, fdisk, fgrep,
find, free, fsck.minix, getty, grep, halt, head, hostid,
id, ifconfig, insmod, kill, killall, klogd, less, ln,
login, logread, ls, lsmod, mkdir, mkfifo, mkfs.minix,
mknod, more, mount, msh, mv, netstat, passwd, ping, ping6,
pivot_root, poweroff, printf, ps, pwd, rdate, reboot,
reset, rm, rmdir, rmmod, route, sh, sleep, su, sulogin,
swapoff, swapon, sysctl, syslogd, tail, telnet, telnetd,
test, tftp, top, touch, true, umount, uname, uptime, usleep,
wget, xargs, yes
#CFE Commands [Note that CFE is accesible via spamming ESC or CTRL-C while rebooting
upgrade Upgrade Firmware
et Broadcom Ethernet utility.
modify Modify flash data.
nvram NVRAM utility.
reboot Reboot.
flash Update a flash memory device
memtest Test memory.
f Fill contents of memory.
e Modify contents of memory.
d Dump memory.
u Disassemble instructions.
batch Load a batch file into memory and execute it
go Verify and boot OS image.
boot Load an executable file into memory and execute it
load Load an executable file into memory without executing it
save Save a region of memory to a remote file via TFTP
ttcp TCP test command.
tcp constest tcp console test.
tcp listen port listener.
tcp connect TCP connection test.
rlogin mini rlogin client.
client Show the client of the dhcp server.
ping Ping a remote IP host.
arp Display or modify the ARP Table
ifconfig Configure the Ethernet interface
show clocks Show current values of the clocks.

show heap Display information about CFE's heap
show memory Display the system physical memory map.
show devices Display information about the installed devices.
unsetenv Delete an environment variable.
printenv Display the environment variables
setenv Set an environment variable.
help Obtain help for CFE commands

Annex C: Modified BCM4718.cfg to Connect OpenOCD to BCM5357
set _CHIPNAME bcm5357
set _LVTAPID 0x101ca17f
set _CPUID 0x1008c17f

source [find target/bcm47xx.cfg]
set _FLASHNAME winbond_flash.flash

flash bank $_FLASHNAME cfi 0x80001000 0x00800000 2 2 $_TARGETNAME
gdb_memory_map disable

Annex D: Binwalk on Dump from 0x80001000 for 8000000 bytes
[base_addr=0x80001000]
> binwalk -B dump_0x80001000_8000000.bin

DECIMAL HEXADECIMAL DESCRIPTION
--
46708 s0xB674 LZMA compressed data, properties: 0x5D, dictionary
size: 65536 bytes, uncompressed size: 291900 bytes
2617344 0x27F000 Linux kernel version 2.6.22
2641040 0x284C90 CRC32 polynomial table, little endian
2656556 0x28892C CRC32 polynomial table, little endian
2852300 0x2B85CC Unix path: /usr/gnemul/riscos/
2854956 0x2B902C Unix path: /usr/lib/libc.so.1
2927975 0x2CAD67 Neighborly text, "NeighborSolicitsts"
2927999 0x2CAD7F Neighborly text,
"NeighborAdvertisementsmp6OutDestUnreachs"
2928200 0x2CAE48 Neighborly text, "NeighborSolicitsirects"
2928228 0x2CAE64 Neighborly text, "NeighborAdvertisementssponses"
2930275 0x2CB663 Neighborly text, "neighbor
%.2x%.2x.%.2x:%.2x:%.2x:%.2x:%.2x:%.2x lost on port %d(%s)(%s)"
3182599 0x309007 Unix path: /usr/sbin/dhclient %s %s %s %s %s %s
3182700 0x30906C Unix path: /usr/sbin/dhclient -r %s -cf %s -sf %s -lf
%s -pf %s %s
3183208 0x309268 Unix path: /usr/sbin/dhclient -6 -dec -sf %s -lf %s -pf
%s %s
3183660 0x30942C Unix path: /usr/sbin/dhclient -nw -cf %s -sf %s -lf %s
-pf %s -bm %s %s &
3184765 0x30987D Unix path: /usr/sbin/check_http.sh]
3184792 0x309898 Unix path: /usr/sbin/check_http.sh &
3185476 0x309B44 Unix path: /usr/sbin/ip -6 route del %s/%s
3203680 0x30E260 Unix path: /usr/sbin/ip -6 route show default
3204552 0x30E5C8 Unix path: /usr/sbin/ip -f inet6 addr flush %s scope
global
3205360 0x30E8F0 Unix path: /usr/sbin/ip -6 route flush table 200

3205768 0x30EA88 Unix path: /usr/sbin/ip -6 route del %s/%d dev %s
3207168 0x30F000 ELF, 32-bit LSB MIPS-I shared object, MIPS, version 1
(SYSV)
3271913 0x31ECE9 HTML document footer
3309568 0x328000 ELF, 32-bit LSB executable, MIPS, version 1 (SYSV)
3336276 0x32E854 Unix path: /var/run/dhcpd.pid br0]
3373299 0x3378F3 Linux kernel version 2.6.22
4358048 0x427FA0 Unix path: /var/run/dhcpd.pid
4561936 0x459C10 XML document, version: "1.0"
4563516 0x45A23C Unix path: /usr/lib/libnvram.so
4624384 0x469000 ELF, 32-bit LSB executable, MIPS, version 1 (SYSV)
4628480 0x46A000 ELF, 32-bit LSB executable, MIPS, version 1 (SYSV)
4687200 0x478560 XML document, version: "1.0"
4688176 0x478930 XML document, version: "1.0"
4698224 0x47B070 SHA256 hash constants, little endian
4698532 0x47B1A4 Unix path: /home/hhm/work/E1200v2-
0825/e1200v2_2.0.10.001/src/bcmcrypto/random.c
4710968 0x47E238 Unix path: /usr/lib/libnetconf.so
4778076 0x48E85C Base64 standard index table
4782112 0x48F820 XML document, version: "1.0"
4786580 0x490994 XML document, version: "1.0"
4791056 0x491B10 XML document, version: "1.0"
4813720 0x497398 Unix path: /etc/config/resolv.conf
4911085 0x4AEFED Unix path: /usr/sbin/upnp
4965272 0x4BC398 Unix path: /etc/config/resolv.conf
4976640 0x4BF000 ELF, 32-bit LSB executable, MIPS, version 1 (SYSV)
4986972 0x4C185C Base64 standard index table
5056916 0x4D2994 XML document, version: "1.0"
5061392 0x4D3B10 XML document, version: "1.0"
5065744 0x4D4C10 XML document, version: "1.0"
5158944 0x4EB820 XML document, version: "1.0"
5270808 0x506D18 Base64 standard index table
5374656 0x5202C0 XML document, version: "1.0"
5375664 0x5206B0 XML document, version: "1.0"
5396880 0x525990 Unix path: /home/hhm/work/E1200v2-
0825/e1200v2_2.0.10.001/src/router/nas/nas_wksp.c
5397728 0x525CE0 Unix path: /home/hhm/work/E1200v2-
0825/e1200v2_2.0.10.001/src/router/nas/nas_wksp_radius.c
5398972 0x5261BC CRC32 polynomial table, little endian
5505024 0x540000 ELF, 32-bit LSB executable, MIPS, version 1 (SYSV)
5510040 0x541398 Unix path: /etc/config/resolv.conf
5537904 0x548070 SHA256 hash constants, little endian
5538212 0x5481A4 Unix path: /home/hhm/work/E1200v2-
0825/e1200v2_2.0.10.001/src/bcmcrypto/random.c
5546548 0x54A234 Unix path: /usr/lib/libnvram.so
5632360 0x55F168 Unix path: /home/hhm/work/E1200v2-
0825/e1200v2_2.0.10.001/src/wps/common/shared/slist.c
5652480 0x564000 ELF, 32-bit LSB executable, MIPS, version 1 (SYSV)
5685230 0x56BFEE Unix path: /usr/sbin/nas
5689788 0x56D1BC CRC32 polynomial table, little endian
5754228 0x57CD74 Unix path: /home/hhm/work/E1200v2-
0825/e1200v2_2.0.10.001/src/wps/brcm_apps/linux/wps_linux_main.c
5856240 0x595BF0 CRC32 polynomial table, little endian
5861956 0x597244 Unix path: /usr/lib/libnvram.so
5873664 0x59A000 ELF, 32-bit LSB MIPS-I shared object, MIPS, version 1

(SYSV)
5894256 0x59F070 SHA256 hash constants, little endian
5894564 0x59F1A4 Unix path: /home/hhm/work/E1200v2-
0825/e1200v2_2.0.10.001/src/bcmcrypto/random.c
5907352 0x5A2398 Unix path: /etc/config/resolv.conf
5910528 0x5A3000 ELF, 32-bit LSB MIPS-I shared object, MIPS, version 1
(SYSV)
5914912 0x5A4120 Unix path: /usr/sbin/acsd
6036872 0x5C1D88 Unix path: /home/hhm/work/E1200v2-
0825/e1200v2_2.0.10.001/src/bcmcrypto/bn.c
6157208 0x5DF398 Unix path: /etc/config/resolv.conf
7579956 0x73A934 Copyright string: "Copyright (C) 2000-2008 Broadcom
Corporation."
7598165 0x73F055 HTML document header
7598250 0x73F0AA HTML document footer
7606864 0x741250 CRC32 polynomial table, little endian
7619392 0x744340 HTML document header
7620498 0x744792 HTML document footer
7620508 0x74479C HTML document header
7620623 0x74480F HTML document footer
7620632 0x744818 HTML document header
7621034 0x7449AA HTML document footer
7621044 0x7449B4 HTML document header
7621468 0x744B5C HTML document footer
7621476 0x744B64 HTML document header
7622204 0x744E3C HTML document header
7622922 0x74510A HTML document footer

