

RO026

Helping the Visually Impaired Navigate
at Bus Stops

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 1

Research Plan

1. Rationale
Singapore aims for a public transport system that is inclusive to all, however, the visually impaired (VI) often

face difficulties in using the public transport system. Advances in computer vision technology could potentially

address this issue.

This project aims to create an all-in-one system to help the VI determine what bus is arriving at the bus stop

using object detection, optical character recognition and text to speech techniques.

Research Question(s)
● What types of networks to use?

○ What are the limitations of each one?

○ How feasible are they to train and run (detection at real time speed)?

● How does one train and use these networks?

○ What can be automated via existing technologies?

○ What needs to be done from scratch?

● How effective will this solution be?

○ Will it be able to capture the buses each time?

○ Will it be user friendly enough to be used by the VI?

2. Hypothesis
We hypothesize that using modern machine learning techniques, we will be able to create a cohesive system

that is able to detect the bus number of oncoming buses and relay this information to the visually impaired.

3. Engineering goal(s)
We aim to create a system that will take in a stream of images and determine the presence of buses in them and

read off the bus number if a bus is present and then relay this information to the user in the form of audio.

4. Expected Outcome(s)

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 2

We hope that the developed system will be user friendly and accurate that the VI are able to reliably use it in

their daily commutes. We also hope that it will prove the effectiveness of this approach towards enabling the VI

to commute more independently and ganer the interest of bigger firms such as Microsoft and Google.

5. Procedures
We collect data by taking the perspective of the VI and filming the buses as they come and go at different bus

stops at different times of the day. These videos are extracted into individual frames. We train an object

detection network with this data and get it to identify the bus number location. We then use an OCR algorithm

or neural network to extract the bus number from the location of the bus number specified by the object

detection algorithm.

6. Risk and Safety
● Do not stand too close to the road while collecting data

● Ensure to not over spend credits on Azure or AWS if we use those cloud platforms

7. Methods for Data Analysis
Data Preparation

- Formatting and labelling the raw data

- Splitting the data for training, testing and validation

Training Phase

- Analysis of the performance of the neural networks

- Accuracy

- Recall

- Precision

8. Bibliography from your literature review
1. "Azure for Students – Free Account Credit | Microsoft Azure." Microsoft,

https://azure.microsoft.com/en-us/free/students/. Accessed December 15, 2020.

2. “Seeing AI | Talking camera app for those with a visual impairment." Microsoft,

https://www.microsoft.com/en-us/ai/seeing-ai. Accessed December 15, 2020.

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 3

3. Vincent, James. "Google releases Lookout app that identifies objects for the visually impaired." The

Verge, March 13, 2019, https://www.theverge.com/2019/3/13/18263426/google-lookout-ai-visually-

impaired-blind-app-assistance. Accessed December 15, 2020.

4. "YOLO: Real-Time Object Detection." Pjreddie, https://pjreddie.com/darknet/yolo/. Accessed

December 15, 2020.

5. "Using Tesseract OCR with Python." PyImageSearch,

https://www.pyimagesearch.com/2017/07/10/using-tesseract-ocr-python/. Accessed December 15, 2020.

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 4

Abstract

The Land Transport Authority’s (LTA) “Land Transport Master Plan 2040”, outlines the aim of

“Transport for All” as LTA plans to reduce the barriers of transport that different groups of commuters face when

taking public transport. A group that faces large amounts of difficulty taking public transport is the Visually

Impaired (VI). We aim to reduce the barriers to public transport that the VI face by developing an all-in-one

system that the VI can use to know what buses are coming when at bus stops. This system uses a custom object

detection model together with optical character recognition (OCR) techniques from the cloud platform Azure to

recognize if there is a bus coming towards the bus stop and what the bus number of the bus is. This information

is then relayed via text-to-speech techniques to the VI to internalize. We successfully collected training data,

trained the custom object detection neural network and constructed the system which was tested on several videos

of buses at bus stops and determined to be working relatively well.

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 5

Report
1 Introduction

Singapore, being a small and dense city state,

strongly relies on the use of public transport to reduce

the impact of congestion and pollution that comes

from rampant use of private transport. Thus, Singapore

utilises many strategies to curb private vehicle usage,

such as the Certificate of Entitlement and the

Electronic Road Pricing system.

However, the other part to reduce private

vehicle usage is to increase the ease of the alternative,

public transport. While the Land Transport Authority

has indeed increased the standards of public transport

in Singapore over the years, groups of people such as

those facing mobility issues or sensory issues are often

neglected.

Enabling these neglected groups not only

increases the appeal of Singapore’s public transport

system, but also serves to increase the cohesiveness

and unity of Singapore as it sends a strong message

that no one is left, behind as Singapore advances into

the future.

Of these neglected groups, a large portion is

made up by the VI. A study by the Singapore Eye

Research Institute in 2015 found that diabetic

retinopathy has to date resulted in visual impairment

of more than 26100 Singaporeans[1]. Apart from

diabetic retinopathy, there are many other causes of

visual impairment, such as glaucoma and cataract. A

risk factor of some of these ailments is age[2], which

makes transport for the VI even more relevant to

Singapore given that Singapore is suffering from an

ageing population.

The VI face difficulties in transportation due to

the lack of information available to them. In the case

of bus transportation, this is with regards to where to

stand (unable to find the first bollard), where the bus

is, or what bus is currently at the bus stop.

Furthermore, through interviews with several VI, it is

found that many visually-sighted people often do

know or care about the difficulties of the VI when

asked for help, thus making seeking help rather

difficult for the VI. Additionally, seeking help

frequently leads the VI to feel less independent and

erodes their self-confidence. Thus, there is a need to

leverage on new technologies to create an innovative

solution that enables the VI to take in more

information about their surroundings and take public

transport more independently.

In this paper, we attempt to build an all-in-one

system that leverages on the cloud platforms to

analyse a feed of images taken from a camera (which

will be worn by the VI), identify buses and bus

numbers on the buses and relay this information via

text-to-speech back to the VI.

We chose to rely on cloud computing rather

than doing the machine learning locally for 2 main

reasons. Firstly, doing the machine learning on the

cloud enables the predictions to be done on the cloud,

reducing the need to heavy amounts of resources while

still being able to make fast predictions. Secondly,

relying on machine learning algorithms on the cloud

RO026
Helping the Visually Impaired Navigate at Bus Stops

 6

platforms mean that we are always using the most up-

to-date and well-trained neural networks out there.

The cloud platform we have chosen to work with is

Microsoft Azure[3] due to its seemingly simpler

workflow and student sponsorship program[4].

1.1 Related Work

The concept of using artificial intelligence to

help the VI with “seeing” is not something new, a very

impressive product current in market is Microsoft’s

“Seeing AI[5]” that uses machine learning to describe

what a VI person is seeing and relaying that

information to the VI. Google also has a similar

product: “Lookout[6]”.

However, both these options are currently very

generic and are not tailored to use in identification of

bus numbers, especially at a large distance, as they are

optimised for closer ranged objects such as people or

supermarket products. Furthermore, Lookout is only

available on Google’s Pixel smartphones, thus making

it rather inaccessible for those without such devices.

As such, there is a need to work on applying

such machine learning technologies on bus

transportation. Perhaps, with validation that this

technique works, big name companies such as

Microsoft and Google will attempt to fit this

technology into their existing products so that the VI

have a single combined platform where they are able

to use AI to help them perceive the world.

2 Materials and Methods
Equipment needed:

1. A 64-bit computer running Linux

2. A camera, the higher the solution, the better the

results

3. Speakers or earpieces to hear the output sound

Prerequisite Software:

1. Python 3.7+[7]

2. Numpy (Python Module)[8]

3. Matplotlib (Python Module)[9]

4. Azure Cognitive Services Speech SDK

(Python Module)

5. Jupyter Notebook[10]

6. FFmpeg (Linux Package)[11]

Other Prerequisites
1. Microsoft Azure subscription

2.1 Overview of System Logic

Our system performs 4 main processes. First it

activates the camera to take a picture and store it as an

image. After which, this image is imported into python

and sent to Azure servers through a POST request to

an Azure Custom Vision[12] prediction application

program interface (API). The API returns the

coordinates of its predicted bounding boxes for the bus

numbers. We then check if there exists a bounding box

which Custom Vision has a high confidence of. If so,

we proceed to crop the image to the coordinates of the

bounding box and use the Azure Recognize Text

API[13] to extract the bus number from the image. If

the API is able to find a valid number within the image,

this is sent the Azure “Text-to-Speech” API[14] which

will write to an audio file to be played.

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 7

Figure 2.1.0: Logical Flow Diagram of System

2.2 Azure Custom Vision Set-Up

Although Azure has a pre-trained computer

vision neural network[15] that detects common objects

in images (including buses), this network is only able

to identify the entire bus but not the actual location of

the bus number on the bus. Thus, using it would result

in less accurate responses from the OCR section later

on.

As such, there is a need to train a custom

computer vision neural network to fit our task. Azure

provides a convenient platform for this in the form of

Azure Custom Vision.

Figure 2.2.0: Bus Detection with Pre-Trained Computer

Vision Network on Azure

2.2.1 Data Gathering

A large amount of quality data is important to

generate an accurate neural network. Although there

are many datasets for vehicles available, most of them

are either not based in Singapore or from the wrong

angle. For the network to learn properly, the buses

need to be the same as those it will be tested on (i.e.

Singapore buses), furthermore, it must be from the

perspective of a human standing at a bus stop and

watching the on-coming vehicles.

With the above constraints, the only reasonable

way to attain data would be to manually film videos of

buses coming from the perspective of someone

standing at a bus stop. Additionally, to reflect real life

scenarios more closely, a tripod was not used as the

neural network would have to take into account

variations in the orientation, position and stability of

the camera in relation to the buses that were coming.

After the videos were filmed, a bash script that

used FFmpeg was written to extract every 10th frame

of the videos.

2.2.2 Data Augmentation

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 8

While in many cases, data augmentation such

as image inversion or rotations can be used to help

generate more data, for this project, the test images are

guaranteed to be upright and the bus is always going

to be on the left of the bus stop as the VI will be facing

the oncoming traffic and Singapore is a left driving

country. As such, there was no benefits and potentially

worsened results if we performed such data

augmentation.

2.2.3 Data Labelling

To reduce the difficulty of the object detection

problem, we opted to only use one class “bus_number”

in our object detection model. The bounding box for

the images were drawn with the built-in labelling tool

from Custom Vision’s web interface. They were

drawn across the top of the front of each bus as shown

in the image below.

Figure 2.2.1: Labelling Bus Numbers on Custom Vision’s

Web Interface

 [Destination] [Bus Number]

Figure 2.2.2: Destination and Bus Number within the

labelled bounding boxes

Choosing to label the bounding boxes around

only the bus numbers and destinations as opposed to

labelling the entire bus helped to ensure that only these

sections of the bus were later cropped and sent to the

OCR network. Sending the entire bus would reduce

the network’s focus on the actual bus numbers and

false bus numbers could be generated as a result as the

OCR network finds other numbers in the image (such

as car license plate numbers).

Additionally, we chose to include the

destination in the bounding boxes for the images as

well to give the algorithm an easier time to find the bus

number. This is because the destination is always

found adjacent to the bus number. Thus we theorised

that the neural network could learn to search for 2

orange sections adjacent to each other. This would be

easier than finding the bus number on its own, which

would also have the complication of the neural

network choosing to put a bounding box around the

destination as opposed to the bus number as they look

visually similar and in a similar location on training

images.

2.2.3 Training the Neural Network

While this is often the most tedious part of

machine learning projects, the use of Azure Custom

Vision greatly simplified the process it automated the

splitting of the labelled images and the training loop

for their neural network. Furthermore, the training was

done on Azure servers and thus could utilise their more

powerful graphics processing units (GPUs). Training

thus only took about 10 compute minutes to complete.

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 9

Performance of the neural network can be seen under

section 3: Results.

2.2.4 Incorporating Custom Vision Network into

System

After the training is done, the neural network

can be accessed via a POST request to the API end-

point for Custom Vision Prediction. The image is sent

in binary as the request body. The response will

contain JavaScript Object Notation (JSON) data on the

position of the different bounding boxes and the

confidence score.

For each image, we assume there is only at

most 1 bus within the image, and identify the bounding

box within the response with the highest confidence

score. If this confidence score is higher than a

threshold (we set ours to be 20%), then there is

considered to be a bus in the image and the bounding

box coordinates are subsequently used to crop the

image, else the image is discarded.

2.3.0 Data Preparation for OCR

After the location of the bus number on the bus

is found out by Custom Vision, we use the Python

Image Library to crop the image to be ready to send to

the OCR algorithm.

We cropped the image to the right 50% of the

predicted bounding box. This was to crop away the

destination in order to ensure that the bus number fills

up most of the space of the image.

Figure 2.3.0: Illustration of Cropping Area for OCR

Furthermore, we performed 2 types of image

resizing on the cropped image. Firstly, we pad white

space to increase the image size to at least 50px by

50px to meet Azure’s API requirement. Secondly, we

resize overly tall images to 50 pixels tall and shrink the

width appropriately to preserve the aspect ratio. This

sounds counterintuitive as the decrease in resolution

typically leads to worse OCR performance. However,

as the bus number is formed from individual lights on

the front panel of the bus, in high resolution close up

shots, the lights could appear separated, leading to the

OCR being unable to detect the number.

Figure 2.3.1: Bus number Before Lowering Resolution

(note the distinctly visible grey strips)

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 10

Fig 2.3.2: Bus Number After Resolution Reduction (less

visible grey strips)

2.3.1 Performing the OCR

Performing the actual OCR was relatively easy

as we used used the pre-trained Azure Cognitive

Services “Recognise Text API”. This was chosen

instead of the “OCR API” and “Read API” on Azure

as OCR API was based on an older recognition model

and Read API is optimised for text heavy images such

as documents which does not fit our OCR needs.

Similar to the Custom Vision API, a POST

request is sent and the response contains the different

text values. To ensure that we get only the bus number

and not any remains of the destination, we search the

response by words and pick the first word that begins

with a number.

2.4.0 Text-to-Speech Synthesis

To inform the VI about the upcoming bus, we

need to convey the information through audio. Again,

we rely on Azure’s Cognitive Services which has a

text-to-speech synthesising API. We synthesize the

sentence “Bus {bus number} is coming now!” and

write it to an audio file which is then played.

3 Results

Table 3.0: Configuration and Performance of Custom

Vision Model

No. of Labelled Images 386

No. of Negative Images 572

Training Time ~10 Minutes

Precision 100.0%

Recall 93.5%

mAP 96.1%

Table 3.1: Testing of Overall System

Number of Videos Tested 6

Number of Successful Tests 5

Table 3.2: Example of Successful Attempt

Raw
Image

Bounding
Box

Cropped
Image

Bus
Number

298

Table 3.3: Example of Unsuccessful Attempt

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 11

Raw Image

Bounding
Box

4 Discussion
Overall, the network works relatively well for

images taken at the correct angle and from the right

distance.

The overall good performance of the system is

likely due to the lack of variety amongst Singapore

public buses. There are only a handful of bus designs,

thus with enough data, our Custom Vision Neural

Network is able to quickly learn how to identify which

parts of the bus to look for to attain the bus number.

However, once the angle for the images

changes (refer to table 3.3), the network has difficulty

finding the bus number. That being said, this is not a

big issue as the system is intended to be used from only

the bus stop angle (refer to table 3.2)

5 Limitations and Future Work
 While doing this project, we were faced with 2

major constraints, time and computational resources.

Machine learning in its current state requires a

large amount of data is needed for good results,

however, the process of collecting data is tiring and

tedious, thus were only able to collect about 1000

images for this project. By collecting more images of

different buses and bus models, we may be able to

improve the network’s performance.

Furthermore, we lacked access to dedicated

hardware (discrete GPUS) to train models locally.

Thus it was not feasible to train large networks such as

YOLOv3[16] or SSDMobileNet[17]. As such, we

decided that it would be most ideal to leverage Azure’s

Custom Vision for our project.

Additionally, our current system is still only

able to work from a computer with a webcam and we

have yet to make it available as a mobile application

which will be the main way the VI would have access

to the system.

Although we have attained a successfully

working system to detect bus numbers for the VI at bus

stops, there is room to improve. With better selected

and customised neural network architecture and data,

we may be able to improve its accuracy. Apart from

just detecting bus numbers, this could be improved to

tell the user where to stand to wait for the bus or where

to face to allow the VI a more comprehensive solution

to reduce the barrier of bus transportation.

Furthermore, it could be improved by incorporating it

into a Bluetooth wearable such as a pair of spectacles

that contain a camera as this would be more

convenient for the VI to use while on the go.

6 Conclusion
In this project, we created a system to detect

the bus number of oncoming buses and relay that

information to the VI through audio means.

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 12

References
[1] "Singapore's Eye Health." Snec, https://www.snec.com.sg/giving/singapores-eye-health. Accessed January

06, 2020.

[2] "Risk Factors for Visual Impairment." PORTAL MyHEALTH, http://www.myhealth.gov.my/en/risk-

factors-for-visual-impairment/. Accessed January 06, 2020.

[3] "Microsoft Azure Cloud Products, Services, Solutions | Microsoft Azure." Microsoft,

https://azure.microsoft.com/en-us/. Accessed January 06, 2020.

[4] "Azure for Students – Free Account Credit | Microsoft Azure." Microsoft, https://azure.microsoft.com/en-

us/free/students/. Accessed January 06, 2020.

[5] "Seeing AI | Talking camera app for those with a visual impairment." Microsoft,

https://www.microsoft.com/en-us/ai/seeing-ai. Accessed January 06, 2020.

[6] Vincent, James. "Google releases Lookout app that identifies objects for the visually impaired." The Verge,

March 13, 2019, https://www.theverge.com/2019/3/13/18263426/google-lookout-ai-visually-impaired-blind-

app-assistance.

[7] "Welcome to Python.org." Python, December 20, 2019, https://www.python.org/. Accessed January 06,

2020.

[8] "NumPy — NumPy." Numpy, https://numpy.org/. Accessed January 06, 2020.

[9] "Matplotlib: Python plotting — Matplotlib 3.1.2 documentation." Matplotlib, https://matplotlib.org/.

Accessed January 06, 2020.

[10] "Project Jupyter | Home." Jupyter, https://jupyter.org/. Accessed January 06, 2020.

[11] "FFmpeg." Ffmpeg, https://www.ffmpeg.org/. Accessed January 06, 2020.

[12] "Custom Vision." Home, https://www.customvision.ai/. Accessed January 06, 2020.

[13] "Printed, handwritten text recognition - Computer Vision." Azure Cognitive Services | Microsoft Docs,

April 17, 2019, https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/concept-

recognizing-text. Accessed January 06, 2020.

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 13

[14] "Text to Speech | Microsoft Azure." Microsoft, https://azure.microsoft.com/en-us/services/cognitive-

services/text-to-speech/. Accessed January 06, 2020.

[15] "Computer Vision | Microsoft Azure." Microsoft, https://azure.microsoft.com/en-us/services/cognitive-

services/computer-vision/. Accessed January 06, 2020.

[16] "YOLO: Real-Time Object Detection." Pjreddie, https://pjreddie.com/darknet/yolo/. Accessed January 06,

2020.

[17] "Review: SSD — Single Shot Detector (Object Detection)." Towardsdatascience,

https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11. Accessed

January 06, 2020.

Appendix
System Main Script
#!/usr/bin/env python
coding: utf-8

Identification of Bus Numbers from Images

Steps
1. Find bounding box of bus numbers
2. Crop image to bounding box location
3. OCR on cropped image
4. Text to Speech to tell the visually impaired about the bus

In[12]:

Libaries
import requests, json, numpy as np, time
import azure.cognitiveservices.speech as speechsdk
from PIL import Image
from matplotlib.pyplot import imshow

get_ipython().run_line_magic('matplotlib', 'inline')

get_ipython().system('ls')

Use Azure Custom Vision to Find Bounding Box of Image

In[47]:

threshold = 0.2 #Threshold on what probability corresponds to a valid bounding box
test_image = "bus_ext_6.jpg"
custom_vision_api =
"https://southcentralus.api.cognitive.microsoft.com/customvision/v3.0/Prediction/b35dc00f-1a23-
4f90-a2f1-c406952ff467/detect/iterations/Bus_Numbers_1/image"

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 14

prediction_key = "secret"

with open(test_image, 'rb') as image_file:
 custom_vision_response = requests.post(custom_vision_api, data=image_file,
headers={"Prediction-Key": prediction_key, "Content-Type": "application/octet-stream"})

print("Custom Vision Response:", custom_vision_response.text)

json_response= json.loads(custom_vision_response.text)
bounding_boxes = json_response['predictions']

In[48]:

Extract Best Bounding Box with Probability > 0.5
max_probability = -1
for bounding_box in bounding_boxes:
 #print("Box:", bounding_box['probability'])
 max_probability = max(max_probability, bounding_box['probability'])

if max_probability < threshold:
 print("No Valid Bounding Boxes Found")
for i in bounding_boxes:
 if i['probability'] == max_probability:
 bounding_box = i
 print(bounding_box)

In[49]:

bounding_box = bounding_box['boundingBox']
print("Bounding Box:", bounding_box)

Use Python Image Libary to Crop Image at Bounding Box

In[50]:

Import Test Image into Python
raw_image = Image.open(test_image)
width, height = raw_image.size

Set Points for Cropped Image to Bounding Box
left = width*bounding_box['left']
right = left + width*bounding_box['width']
top = height*bounding_box['top']
bottom = top + height*bounding_box['height']

Crop Image
bus_num_image = raw_image.crop((left, top, right, bottom))
print("Image of Bus Number")
imshow(np.asarray(bus_num_image)) #Display the Image

In[51]:

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 15

ocr_crop_percentage = 0.5
Crop Away ocr_crop_percentage of Left Side for OCR Reasons
width, height = bus_num_image.size
left = width * ocr_crop_percentage
right = width
top = 0
bottom = height

ocr_image = bus_num_image.crop((left, top, right, bottom))

Resize Image with Interpolation if height too big (somehow OCR on Azure doesn't work too well
with too sharp of bus numbers)
width, height = ocr_image.size
if height > 50:
 ocr_image = ocr_image.resize((int(width*50/height),50),Image.ANTIALIAS) # Ensure the
aspect ratio doesn't change
print("OCR Ready Image")
imshow(np.asarray(ocr_image)) #Display the Image

Save OCR Ready Image
ocr_image_file = "ocr.png"
ocr_image.save(ocr_image_file)

In[52]:

Fits image into a square of at least 50x50 pixels by padding white space
def Reformat_Image(ImageFilePath):

 from PIL import Image
 image = Image.open(ImageFilePath, 'r')
 image_size = image.size
 width = image_size[0]
 height = image_size[1]

 if(width != height or (width < 50 and height < 50)):
 bigside = width if width > height else height
 if bigside < 50:
 bigside = 50

 background = Image.new('RGBA', (bigside, bigside), (255, 255, 255, 255))
 offset = (int(round(((bigside - width) / 2), 0)), int(round(((bigside - height) / 2),0)))

 background.paste(image, offset)
 background.save(ocr_image_file)
 print("Image has been resized !")
 print(background.size)

 else:
 print("Image is already a square, it has not been resized !")

Reformat_Image(ocr_image_file)

OCR with Azure Cognitive Services

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 16

Uses the Recognise Text API which operates asyncronously

In[53]:

Sending Image file to Recognise Text API
ocr_key = "secret"
ocr_api = "https://southcentralus.api.cognitive.microsoft.com/vision/v2.0/recognizeText"

#ocr_image_file= "helloworld.png"
params ={"mode": "Printed"}
with open(ocr_image_file, 'rb') as image_file:
 print("Sending", ocr_image_file)
 ocr_response = requests.post(ocr_api, data=image_file, headers={"Ocp-Apim-Subscription-
Key": ocr_key, "Content-Type": "application/octet-stream"}, params=params)
 print("Resource location", ocr_response.headers['Operation-Location'])
ocr_response

In[54]:

Request for the Result
request_result_api = ocr_response.headers['Operation-Location']

while True:
 ocr_status = requests.get(request_result_api, headers={"Ocp-Apim-Subscription-Key":
ocr_key})
 print("Response Text:", ocr_status.text)
 json_response= json.loads(ocr_status.text)
 if json_response['status'] == "Succeeded":
 print("OCR Finished")
 break
 else:
 time.sleep(0.5)

In[55]:

Extract Lines from Response
lines = json_response["recognitionResult"]["lines"]
if len(lines) == 0:
 print("No Text Identified...")

Finding first word that begins with a number
predicted_number = ""
for line in lines:
 for word in line["words"]:
 #print(word["text"][0])
 if word["text"][0].isdigit():

 predicted_number = word["text"]
 break
if predicted_number == "":
 print("Failed to Get a Number...")

RO026
 Helping the Visually Impaired Navigate at Bus Stops

 17

else:
 print("Predicted Bus Number:", predicted_number)

Synthesise Speech to Output File

In[56]:

speech_key, service_region = ocr_key, "southcentralus"
speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)

audio_filename = "bus_number.wav"
audio_output = speechsdk.AudioOutputConfig(filename=audio_filename)

speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config,
audio_config=audio_output)

text = "Bus "+ predicted_number + " is comming now!"
result = speech_synthesizer.speak_text_async(text).get()

if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
 print("Speech synthesized to [{}] for text [{}]".format(audio_filename, text))
elif result.reason == speechsdk.ResultReason.Canceled:
 cancellation_details = result.cancellation_details
 print("Speech synthesis canceled: {}".format(cancellation_details.reason))
 if cancellation_details.reason == speechsdk.CancellationReason.Error:
 if cancellation_details.error_details:
 print("Error details: {}".format(cancellation_details.error_details))

